進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1102201910000600
論文名稱(中文) 缺氧誘導的丙酮酸脫氫酶激酶-1和神經營養性酪氨酸激酶2型受體在子宮內膜異位症致病機制中的作用
論文名稱(英文) Effects of hypoxia-induced pyruvate dehydrogenase kinase-1 and neurotrophic receptor tyrosine kinase-2 in the pathogenesis of endometriosis
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 107
學期 1
出版年 108
研究生(中文) 李脩琦
研究生(英文) Hsiu-Chi Lee
學號 S58011190
學位類別 博士
語文別 英文
論文頁數 85頁
口試委員 指導教授-蔡少正
召集委員-蔡曜聲
口試委員-吳孟興
口試委員-張志鵬
口試委員-蔡英美
口試委員-莊佩錦
中文關鍵字 缺氧  細胞代謝  細胞死亡  非賀爾蒙治療 
英文關鍵字 hypoxia  cellular metabolism  cell death  non-hormonal treatment 
學科別分類
中文摘要 子宮內膜異位症是子宮內膜組織不正常生長在子宮腔以外的地方,為一種常見的婦科疾病,生育年齡婦女的盛行率大約是百分之十,在臨床上的主要症狀為慢性骨盆腔疼痛、經痛以及不孕,進而降低患者的生活品質。然而,子宮內膜異位症的致病機制極為複雜且尚未清楚,目前最被接受的原因為經血逆流學說,當月經來潮時,子宮內膜組織經由輸卵管逆流至骨盆腔進而附著生長。在實驗室先前的研究中發現,異位的子宮內膜基質細胞表現大量的缺氧誘導因子-1α,基於逆流學說可能造成逆流的子宮內膜細胞面臨缺氧的情況,同時缺氧被認為是導致許多病理過程的關鍵因素。因此,本研究的主要目標為探討缺氧誘導的病理改變可能導致子宮內膜異位症發展的原因,同時進一步探討以缺氧誘導的病理改變作為標的,進行非賀爾蒙治療的可能性。研究的結果顯示,調控細胞醣類代謝主要的酵素丙酮酸脫氫酶激酶-1在子宮內膜異位基質細胞中大量表現,而缺氧的確可以藉由轉錄調控而促進丙酮酸脫氫酶激酶-1表現。相較於子宮內膜原位基質細胞,高度表現丙酮酸脫氫酶激酶-1的異位基質細胞伴隨著較多的乳酸產生以及較高耗氧速率,而乳酸產生和細胞耗氧速率在給予丙酮酸脫氫酶激酶抑制劑(dichloroacetate)的處理下會減少。此外,缺氧所誘導的丙酮酸脫氫酶激酶-1能夠幫助子宮內膜基質細胞克服過氧化氫以及低營養環境所引起的細胞死亡。另一方面,生物資訊的分析結果顯示,神經營養性酪氨酸激酶2型受體可能做為藥物治療的標的。同時,實驗結果顯示神經營養性酪氨酸激酶2型受體在子宮內膜異位症的臨床檢體以及子宮內膜異位症模擬老鼠的組織中大量表現,而且細胞實驗結果證明了缺氧能夠透過缺氧誘導因子-1α促進神經營養性酪氨酸激酶2型受體在子宮內膜基質細胞中表現。在實驗中,利用神經營養性酪氨酸激酶2型受體的小分子非競爭性拮抗劑(ANA-12)處理子宮內膜異位基質細胞,則能造成異位細胞的死亡。進一步給予子宮內膜異位症模擬老鼠ANA-12的處理,發現異位病灶體積有減小的情況,因此認為ANA-12有潛力作為子宮內膜異位症治療的藥物。總結研究結果推斷,缺氧誘導的病理改變參與在子宮內膜異位症的發展過程中,而針對缺氧誘導的病理改變作為目標有可能進一步發展成為治療子宮內膜異位症的方法。
英文摘要 Endometriosis is a common gynecological disease, which affects about 10% of women in reproductive-age. It causes chronic pelvic pain, dysmenorrhea and infertility and decreases the life quality of patients. However, the cause of endometriosis is complex and largely unclear. Our previous study demonstrates that HIF-1α is up-regulated in ectopic endometriotic stromal cells. Since hypoxia is a critical factor leading to many pathological processes, thus the overall objective of this study is to investigate hypoxia-induced pathological alteration that may contribute to the progression of endometriosis, and to further explore the potential hormone-independent treatments base on the hypoxia-induced pathological alteration. Here, we found the expression of pyruvate dehydrogenase kinase 1 (PDK1), a critical enzyme in regulating glucose metabolism, was increased in ectopic stromal cell. Molecular characterization reveals that overexpression of PDK1 is induced by hypoxia through transcriptional regulation. Upregulation of PDK1 in ectopic endometriotic stromal cells is accompanied by increases in lactate production and oxygen consumption rate as compared to eutopic endometrial stromal cells. Furthermore, our data show that lactate production and oxygen consumption rate of ectopic stromal cells were decreased when cells were treated with PDK1 inhibitor, dichloroacetate. In addition, hypoxia-induced PDK1 expression prevents cells from H2O2- and low nutrient-induced cell death. On the other hand, we performed the bioinformatics analysis and found neurotrophic receptor tyrosine kinase 2 (NTRK2, also known as TrkB) as a potential candidate for treatment. Both in clinical specimen and the endometriosis mouse model, the levels of NTRK2 were markedly upregulated in the lesions. In addition, we found that hypoxia can induce NTRK2 expression in a HIF1α-dependent manner. Administration of ANA-12, a selective non-competitive antagonist of NTRK2, significantly induced endometriotic stromal cells death, suggesting it may be a potential therapeutic agent. Indeed, treatment of endometriotic lesion-bearing mice with ANA-12 (1.5 mg/kg body weight) caused the ectopic lesions regression. Taken together, our results demonstrate that hypoxia-induced pathological alterations involve in the progression of endometriosis, which can be the target of treatment for endometriosis.
論文目次 Contents
摘要 I
Abstract III
誌謝 V
Abbreviation XI
Overview of endometriosis and hypoxia 1
Endometriosis 1
Theories of pathogenesis 1
Treatments 3
Mechanisms of development of endometriosis 6
Hypoxia 7
Objective and aims 11
PDK1 in endometriosis 13
Introduction 13
Materials and Methods 14
Results 19
Discussion 22
NTRK2 in endometriosis 26
Introduction 26
Materials and methods 27
Results 31
Discussion 34
Conclusion 36
References 38
Figures 53
Tables 80
Publications 85

Table contents
Table 1. Reagents and instruments 80
Table 2. Primer sequences 83
Table 3. Antibody list 84

Figure contents
Figure 1. Schematic drawings show domain structure and regulation of HIFs. 53
Figure 2. Hypoxia is involved in pathological processes of endometriosis. 54
Figure 3. The typical characteristics of the Warburg-effect in endometrial and endometriotic stromal cells. 55
Figure 4. The oxygen consumption rates are measured in the endometrial and endometriotic stromal cells. 56
Figure 5. The intercellular ATP content and mitochondrial membrane potential are measured in the eutopic and ectopic stromal cells. 57
Figure 6. The mRNA levels of PDK1 and PDK3 are elevated in endometriotic ectopic stromal cells. 58
Figure 7. The protein level of PDK1 is upregulated in endometriotic ectopic stromal cells. 59
Figure 8. PDK1 is induced by hypoxia. 60
Figure 9. Hypoxia mediates PDK1 induction via transcriptional regulation. 61
Figure 10. Representative Western blot of the DCA treated and the shRNA treated ectopic cells. 62
Figure 11. Upregulated PDK1 regulates lactate production of ectopic endometriotic stromal cells. 63
Figure 12. Glucose uptake ability of ectopic cell is not altered by DCA treatment. 64
Figure 13. Upregulated PDK1 is involved in oxygen consumption of ectopic endometriotic stromal cell. 65
Figure 14. DCA attenuates anti-apoptotic ability of ectopic stromal cells. 66
Figure 15. Blocking the PDK activity attenuates antiapoptotic ability of hypoxia pre-treated eutopic stromal cells. 67
Figure 16. NTRK2 expression level is elevated in three public datasets. 68
Figure 17. NTRK2 expression level is elevated in ectopic tissues. 69
Figure 18. The elevated level of NTRK2 is menstrual cycle independent. 70
Figure 19. Expression level of NTRK2 and BDNF are increased in ectopic endometriotic stromal cells. 71
Figure 20. Cytokine stimuli do not induce the mRNA expression of NTRK2. 72
Figure 21. The NTRK2 induction is mediated by hypoxia. 73
Figure 22. Elevated NTRK2 expression promotes ectopic stromal cell growth. 74
Figure 23. Blocking NTRK2 decreases the viability of ectopic stromal cells. 75
Figure 24. Surgical-induced endometriosis in mice. 76
Figure 25. Specific NTRK2 inhibitor decreases the lesion growth in the endometriosis mouse model. 77
Figure 26. PDK1 and NTRK2 may not affect each other. 78
Figure 27. Hypoxia-induced PDK1 and NTRK2 in the pathogenesis of endometriosis. 79

參考文獻 References
1. Fauconnier, A., et al. Relation between pain symptoms and the anatomic location of deep infiltrating endometriosis. Fertil. Steril. 78, 719-726 (2002).
2. Adamson, G.D. Endometriosis classification: an update. Curr. Opin. Obstet. Gynecol. 23, 213-220 (2011).
3. Missmer, S.A., et al. Incidence of laparoscopically confirmed endometriosis by demographic, anthropometric, and lifestyle factors. Am. J. Epidemiol. 160, 784-796 (2004).
4. Falcone, T. & Lebovic, D.I. Clinical management of endometriosis. Obstet. Gynecol. 118, 691-705 (2011).
5. Leyland, N., Casper, R., Laberge, P., Singh, S.S. & Sogc. Endometriosis: diagnosis and management. J. Obstet. Gynaecol. Can. 32, S1-32 (2010).
6. Schrager, S., Falleroni, J. & Edgoose, J. Evaluation and treatment of endometriosis. Am. Fam. Physician 87, 107-113 (2013).
7. Facchin, F., et al. Impact of endometriosis on quality of life and mental health: pelvic pain makes the difference. J. Psychosom. Obstet. Gynaecol. 36, 135-141 (2015).
8. Tremellen, K. & Thalluri, V. Influence of Endometriosis on Assisted Reproductive Technology Outcomes: A Systematic Review and Meta-analysis. Obstet. Gynecol. 125, 1498-1499 (2015).
9. Kim, H.S., Kim, T.H., Chung, H.H. & Song, Y.S. Risk and prognosis of ovarian cancer in women with endometriosis: a meta-analysis. Br. J. Cancer 110, 1878-1890 (2014).
10. Acien, P. & Velasco, I. Endometriosis: a disease that remains enigmatic. ISRN Obstet. Gynecol. 2013, 242149 (2013).
11. Sampson, J.A. Metastatic or Embolic Endometriosis, due to the Menstrual Dissemination of Endometrial Tissue into the Venous Circulation. Am J Pathol 3, 93-110 143 (1927).
12. D'Hooghe, T.M. Clinical relevance of the baboon as a model for the study of endometriosis. Fertil. Steril. 68, 613-625 (1997).
13. Halme, J., Hammond, M.G., Hulka, J.F., Raj, S.G. & Talbert, L.M. Retrograde menstruation in healthy women and in patients with endometriosis. Obstet. Gynecol. 64, 151-154 (1984).
14. Giudice, L.C. & Kao, L.C. Endometriosis. Lancet 364, 1789-1799 (2004).
15. Matsuura, K., Ohtake, H., Katabuchi, H. & Okamura, H. Coelomic metaplasia theory of endometriosis: evidence from in vivo studies and an in vitro experimental model. Gynecol. Obstet. Invest. 47 Suppl 1, 18-20; discussion 20-12 (1999).
16. Nisolle, M. & Donnez, J. Peritoneal endometriosis, ovarian endometriosis, and adenomyotic nodules of the rectovaginal septum are three different entities. Fertil. Steril. 68, 585-596 (1997).
17. Sourial, S., Tempest, N. & Hapangama, D.K. Theories on the pathogenesis of endometriosis. Int J Reprod Med 2014, 179515 (2014).
18. Sasson, I.E. & Taylor, H.S. Stem cells and the pathogenesis of endometriosis. Ann. N. Y. Acad. Sci. 1127, 106-115 (2008).
19. Rier, S.E., Martin, D.C., Bowman, R.E., Dmowski, W.P. & Becker, J.L. Endometriosis in rhesus monkeys (Macaca mulatta) following chronic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Fundam. Appl. Toxicol. 21, 433-441 (1993).
20. Koninckx, P.R., Braet, P., Kennedy, S.H. & Barlow, D.H. Dioxin pollution and endometriosis in Belgium. Hum. Reprod. 9, 1001-1002 (1994).
21. Hadfield, R.M., Mardon, H.J., Barlow, D.H. & Kennedy, S.H. Endometriosis in monozygotic twins. Fertil. Steril. 68, 941-942 (1997).
22. Stefansson, H., et al. Genetic factors contribute to the risk of developing endometriosis. Hum. Reprod. 17, 555-559 (2002).
23. Treloar, S.A., et al. Genomewide linkage study in 1,176 affected sister pair families identifies a significant susceptibility locus for endometriosis on chromosome 10q26. Am. J. Hum. Genet. 77, 365-376 (2005).
24. Brown, J., Crawford, T.J., Allen, C., Hopewell, S. & Prentice, A. Nonsteroidal anti-inflammatory drugs for pain in women with endometriosis. Cochrane Database Syst Rev 1, CD004753 (2017).
25. Brown, J., Crawford, T.J., Datta, S. & Prentice, A. Oral contraceptives for pain associated with endometriosis. Cochrane Database Syst Rev 5, CD001019 (2018).
26. Seracchioli, R., et al. Long-term oral contraceptive pills and postoperative pain management after laparoscopic excision of ovarian endometrioma: a randomized controlled trial. Fertil. Steril. 94, 464-471 (2010).
27. Strowitzki, T., Marr, J., Gerlinger, C., Faustmann, T. & Seitz, C. Dienogest is as effective as leuprolide acetate in treating the painful symptoms of endometriosis: a 24-week, randomized, multicentre, open-label trial. Hum. Reprod. 25, 633-641 (2010).
28. Lee, D.Y., Lee, J.Y., Seo, J.W., Yoon, B.K. & Choi, D. Gonadotropin-releasing hormone agonist with add-back treatment is as effective and tolerable as dienogest in preventing pain recurrence after laparoscopic surgery for endometriosis. Arch. Gynecol. Obstet. 294, 1257-1263 (2016).
29. Takaesu, Y., et al. Dienogest compared with gonadotropin-releasing hormone agonist after conservative surgery for endometriosis. J. Obstet. Gynaecol. Res. 42, 1152-1158 (2016).
30. Brown, J., Pan, A. & Hart, R.J. Gonadotrophin-releasing hormone analogues for pain associated with endometriosis. Cochrane Database Syst Rev, CD008475 (2010).
31. Selak, V., Farquhar, C., Prentice, A. & Singla, A. Danazol for pelvic pain associated with endometriosis. Cochrane Database Syst Rev, CD000068 (2007).
32. Melis, G.B., et al. Overview of elagolix for the treatment of endometriosis. Expert Opin. Drug Metab. Toxicol. 12, 581-588 (2016).
33. Taylor, H.S., et al. Treatment of Endometriosis-Associated Pain with Elagolix, an Oral GnRH Antagonist. N. Engl. J. Med. 377, 28-40 (2017).
34. de Ziegler, D., Borghese, B. & Chapron, C. Endometriosis and infertility: pathophysiology and management. Lancet 376, 730-738 (2010).
35. Hughes, E., et al. Ovulation suppression for endometriosis. Cochrane Database Syst Rev, CD000155 (2007).
36. Benschop, L., Farquhar, C., van der Poel, N. & Heineman, M.J. Interventions for women with endometrioma prior to assisted reproductive technology. Cochrane Database Syst Rev, CD008571 (2010).
37. Medeiros, L.R., et al. Laparoscopy versus laparotomy for benign ovarian tumour. Cochrane Database Syst Rev, CD004751 (2009).
38. Hart, R.J., Hickey, M., Maouris, P. & Buckett, W. Excisional surgery versus ablative surgery for ovarian endometriomata. Cochrane Database Syst Rev, CD004992 (2008).
39. Chen, M.L., Lee, K.C., Yang, C.T., Hung, K.H. & Wu, M.H. Simultaneous laparoscopy for endometriotic women undergoing in vitro fertilization. Taiwan. J. Obstet. Gynecol. 51, 66-70 (2012).
40. Soares, S.R., Martinez-Varea, A., Hidalgo-Mora, J.J. & Pellicer, A. Pharmacologic therapies in endometriosis: a systematic review. Fertil. Steril. 98, 529-555 (2012).
41. Nawathe, A., Patwardhan, S., Yates, D., Harrison, G.R. & Khan, K.S. Systematic review of the effects of aromatase inhibitors on pain associated with endometriosis. BJOG 115, 818-822 (2008).
42. Alborzi, S., et al. A comparison of the effect of short-term aromatase inhibitor (letrozole) and GnRH agonist (triptorelin) versus case control on pregnancy rate and symptom and sign recurrence after laparoscopic treatment of endometriosis. Arch. Gynecol. Obstet. 284, 105-110 (2011).
43. Cobellis, L., et al. The treatment with a COX-2 specific inhibitor is effective in the management of pain related to endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 116, 100-102 (2004).
44. Matalliotakis, I.M., et al. Familial aggregation of endometriosis in the Yale Series. Arch. Gynecol. Obstet. 278, 507-511 (2008).
45. Nouri, K., Ott, J., Krupitz, B., Huber, J.C. & Wenzl, R. Family incidence of endometriosis in first-, second-, and third-degree relatives: case-control study. Reprod. Biol. Endocrinol. 8, 85 (2010).
46. Uno, S., et al. A genome-wide association study identifies genetic variants in the CDKN2BAS locus associated with endometriosis in Japanese. Nat. Genet. 42, 707-710 (2010).
47. Painter, J.N., et al. Genome-wide association study identifies a locus at 7p15.2 associated with endometriosis. Nat. Genet. 43, 51-54 (2011).
48. Nyholt, D.R., et al. Genome-wide association meta-analysis identifies new endometriosis risk loci. Nat. Genet. 44, 1355-1359 (2012).
49. Rahmioglu, N., et al. Genetic variants underlying risk of endometriosis: insights from meta-analysis of eight genome-wide association and replication datasets. Hum. Reprod. Update 20, 702-716 (2014).
50. Bulun, S.E. Endometriosis. The New England journal of medicine 360, 268-279 (2009).
51. Tsai, S.J., Wu, M.H., Lin, C.C., Sun, H.S. & Chen, H.M. Regulation of steroidogenic acute regulatory protein expression and progesterone production in endometriotic stromal cells. J Clin Endocrinol Metab 86, 5765-5773 (2001).
52. Noble, L.S., et al. Prostaglandin E2 stimulates aromatase expression in endometriosis-derived stromal cells. J Clin Endocrinol Metab 82, 600-606 (1997).
53. Noble, L.S., Simpson, E.R., Johns, A. & Bulun, S.E. Aromatase expression in endometriosis. J Clin Endocrinol Metab 81, 174-179 (1996).
54. Brandenberger, A.W., et al. Oestrogen receptor (ER)-alpha and ER-beta isoforms in normal endometrial and endometriosis-derived stromal cells. Mol Hum Reprod 5, 651-655 (1999).
55. Xue, Q., et al. Promoter methylation regulates estrogen receptor 2 in human endometrium and endometriosis. Biol. Reprod. 77, 681-687 (2007).
56. Bulun, S.E., et al. Role of estrogen receptor-beta in endometriosis. Semin. Reprod. Med. 30, 39-45 (2012).
57. Wing, L.Y., Chuang, P.C., Wu, M.H., Chen, H.M. & Tsai, S.J. Expression and mitogenic effect of fibroblast growth factor-9 in human endometriotic implant is regulated by aberrant production of estrogen. J Clin Endocrinol Metab 88, 5547-5554 (2003).
58. Pierro, E., et al. Stromal-epithelial interactions modulate estrogen responsiveness in normal human endometrium. Biol. Reprod. 64, 831-838 (2001).
59. Haining, R.E., et al. Epidermal growth factor in human endometrium: proliferative effects in culture and immunocytochemical localization in normal and endometriotic tissues. Hum. Reprod. 6, 1200-1205 (1991).
60. Croze, F., Kennedy, T.G., Schroedter, I.C., Friesen, H.G. & Murphy, L.J. Expression of insulin-like growth factor-I and insulin-like growth factor-binding protein-1 in the rat uterus during decidualization. Endocrinology 127, 1995-2000 (1990).
61. Wu, M.H., Lu, C.W., Chuang, P.C. & Tsai, S.J. Prostaglandin E2: the master of endometriosis? Experimental biology and medicine (Maywood, N.J 235, 668-677 (2010).
62. Sun, H.S., Hsiao, K.Y., Hsu, C.C., Wu, M.H. & Tsai, S.J. Transactivation of steroidogenic acute regulatory protein in human endometriotic stromalcells is mediated by the prostaglandin EP2 receptor. Endocrinology 144, 3934-3942 (2003).
63. Hsu, C.C., Lu, C.W., Huang, B.M., Wu, M.H. & Tsai, S.J. Cyclic adenosine 3',5'-monophosphate response element-binding protein and CCAAT/enhancer-binding protein mediate prostaglandin E2-induced steroidogenic acute regulatory protein expression in endometriotic stromal cells. Am J Pathol 173, 433-441 (2008).
64. Ota, H., Igarashi, S., Sasaki, M. & Tanaka, T. Distribution of cyclooxygenase-2 in eutopic and ectopic endometrium in endometriosis and adenomyosis. Hum. Reprod. 16, 561-566 (2001).
65. Chishima, F., et al. Increased expression of cyclooxygenase-2 in local lesions of endometriosis patients. Am. J. Reprod. Immunol. 48, 50-56 (2002).
66. Wu, M.H., et al. Distinct regulation of cyclooxygenase-2 by interleukin-1beta in normal and endometriotic stromal cells. The Journal of clinical endocrinology and metabolism 90, 286-295 (2005).
67. Tamura, M., et al. Up-regulation of cyclooxygenase-2 expression and prostaglandin synthesis in endometrial stromal cells by malignant endometrial epithelial cells. A paracrine effect mediated by prostaglandin E2 and nuclear factor-kappa B. J. Biol. Chem. 277, 26208-26216 (2002).
68. Tamura, M., et al. Vascular endothelial growth factor up-regulates cyclooxygenase-2 expression in human endothelial cells. J Clin Endocrinol Metab 87, 3504-3507 (2002).
69. Wu, M.H., et al. Distinct mechanisms regulate cyclooxygenase-1 and -2 in peritoneal macrophages of women with and without endometriosis. Molecular human reproduction 8, 1103-1110 (2002).
70. Chuang, P.C., Sun, H.S., Chen, T.M. & Tsai, S.J. Prostaglandin E2 induces fibroblast growth factor 9 via EP3-dependent protein kinase Cdelta and Elk-1 signaling. Mol. Cell. Biol. 26, 8281-8292 (2006).
71. Laschke, M.W., Elitzsch, A., Scheuer, C., Vollmar, B. & Menger, M.D. Selective cyclo-oxygenase-2 inhibition induces regression of autologous endometrial grafts by down-regulation of vascular endothelial growth factor-mediated angiogenesis and stimulation of caspase-3-dependent apoptosis. Fertil. Steril. 87, 163-171 (2007).
72. Finetti, F., et al. Prostaglandin E2 regulates angiogenesis via activation of fibroblast growth factor receptor-1. J. Biol. Chem. 283, 2139-2146 (2008).
73. Chuang, P.C., et al. Inhibition of CD36-dependent phagocytosis by prostaglandin E2 contributes to the development of endometriosis. The American journal of pathology 176, 850-860 (2010).
74. Semenza, G.L. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu. Rev. Pathol. 9, 47-71 (2014).
75. Schodel, J., et al. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 117, e207-217 (2011).
76. Manalo, D.J., et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105, 659-669 (2005).
77. Xia, X., et al. Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc. Natl. Acad. Sci. U. S. A. 106, 4260-4265 (2009).
78. Semenza, G.L. HIF-1 and human disease: one highly involved factor. Genes Dev. 14, 1983-1991 (2000).
79. Wu, D., Potluri, N., Lu, J., Kim, Y. & Rastinejad, F. Structural integration in hypoxia-inducible factors. Nature 524, 303-308 (2015).
80. Maxwell, P.H., et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271-275 (1999).
81. Lando, D., et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16, 1466-1471 (2002).
82. Lando, D., Peet, D.J., Whelan, D.A., Gorman, J.J. & Whitelaw, M.L. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295, 858-861 (2002).
83. Ruas, J.L., Poellinger, L. & Pereira, T. Functional analysis of hypoxia-inducible factor-1 alpha-mediated transactivation. Identification of amino acid residues critical for transcriptional activation and/or interaction with CREB-binding protein. J. Biol. Chem. 277, 38723-38730 (2002).
84. Mahon, P.C., Hirota, K. & Semenza, G.L. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 15, 2675-2686 (2001).
85. Wu, M.H., Chen, K.F., Lin, S.C., Lgu, C.W. & Tsai, S.J. Aberrant expression of leptin in human endometriotic stromal cells is induced by elevated levels of hypoxia inducible factor-1alpha. Am J Pathol 170, 590-598 (2007).
86. Wu, M.H., Lin, S.C., Hsiao, K.Y. & Tsai, S.J. Hypoxia-inhibited dual-specificity phosphatase-2 expression in endometriotic cells regulates cyclooxygenase-2 expression. J Pathol 225, 390-400 (2011).
87. Lin, S.C., et al. Hypoxia-induced microRNA-20a expression increases ERK phosphorylation and angiogenic gene expression in endometriotic stromal cells. The Journal of clinical endocrinology and metabolism 97, E1515-1523 (2012).
88. Hsiao, K.Y., Chang, N., Lin, S.C., Li, Y.H. & Wu, M.H. Inhibition of dual specificity phosphatase-2 by hypoxia promotes interleukin-8-mediated angiogenesis in endometriosis. Hum. Reprod. 29, 2747-2755 (2014).
89. Tan, C.W., et al. CD26/DPPIV down-regulation in endometrial stromal cell migration in endometriosis. Fertil. Steril. 102, 167-177 e169 (2014).
90. Xu, T.X., Zhao, S.Z., Dong, M. & Yu, X.R. Hypoxia responsive miR-210 promotes cell survival and autophagy of endometriotic cells in hypoxia. Eur. Rev. Med. Pharmacol. Sci. 20, 399-406 (2016).
91. Hsiao, K.Y., et al. Coordination of AUF1 and miR-148a destabilizes DNA methyltransferase 1 mRNA under hypoxia in endometriosis. Mol Hum Reprod 21, 894-904 (2015).
92. Lee, H.C. & Tsai, S.J. Endocrine targets of hypoxia-inducible factors. J. Endocrinol. 234, R53-R65 (2017).
93. Maybin, J.A., et al. Hypoxia and hypoxia inducible factor-1alpha are required for normal endometrial repair during menstruation. Nat Commun 9, 295 (2018).
94. Hsiao, K.Y., Lin, S.C., Wu, M.H. & Tsai, S.J. Pathological functions of hypoxia in endometriosis. Front Biosci (Elite Ed) 7, 309-321 (2015).
95. Warburg, O. On the origin of cancer cells. Science 123, 309-314 (1956).
96. Young, V.J., et al. Transforming growth factor-beta induced Warburg-like metabolic reprogramming may underpin the development of peritoneal endometriosis. J Clin Endocrinol Metab 99, 3450-3459 (2014).
97. Gudi, R., Bowker-Kinley, M.M., Kedishvili, N.Y., Zhao, Y. & Popov, K.M. Diversity of the pyruvate dehydrogenase kinase gene family in humans. J. Biol. Chem. 270, 28989-28994 (1995).
98. Bowker-Kinley, M.M., Davis, W.I., Wu, P., Harris, R.A. & Popov, K.M. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem. J. 329 ( Pt 1), 191-196 (1998).
99. Kim, J.W., Tchernyshyov, I., Semenza, G.L. & Dang, C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3, 177-185 (2006).
100. Lu, C.W., Lin, S.C., Chen, K.F., Lai, Y.Y. & Tsai, S.J. Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J. Biol. Chem. 283, 28106-28114 (2008).
101. Papandreou, I., Cairns, R.A., Fontana, L., Lim, A.L. & Denko, N.C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187-197 (2006).
102. Krivoruchko, A., Zhang, Y., Siewers, V., Chen, Y. & Nielsen, J. Microbial acetyl-CoA metabolism and metabolic engineering. Metab Eng 28, 28-42 (2015).
103. Denko, N.C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer 8, 705-713 (2008).
104. Majmundar, A.J., Wong, W.J. & Simon, M.C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40, 294-309 (2010).
105. Weljie, A.M. & Jirik, F.R. Hypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effect. Int. J. Biochem. Cell Biol. 43, 981-989 (2011).
106. Doherty, J.R. & Cleveland, J.L. Targeting lactate metabolism for cancer therapeutics. J. Clin. Invest. 123, 3685-3692 (2013).
107. DeBerardinis, R.J., et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U. S. A. 104, 19345-19350 (2007).
108. Metallo, C.M., et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380-384 (2011).
109. Wise, D.R., et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. U. S. A. 108, 19611-19616 (2011).
110. Shyh-Chang, N., et al. Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell 155, 778-792 (2013).
111. de Moura, M.B., Uppala, R., Zhang, Y., Van Houten, B. & Goetzman, E.S. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells. PLoS One 9, e106028 (2014).
112. Smolkova, K., et al. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int. J. Biochem. Cell Biol. 43, 950-968 (2011).
113. Wagner, B.A., Venkataraman, S. & Buettner, G.R. The rate of oxygen utilization by cells. Free Radic. Biol. Med. 51, 700-712 (2011).
114. Rodrigues, M.F., et al. Enhanced OXPHOS, glutaminolysis and beta-oxidation constitute the metastatic phenotype of melanoma cells. Biochem. J. 473, 703-715 (2016).
115. Bonnet, S., et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11, 37-51 (2007).
116. Choi, Y.W. & Lim, I.K. Sensitization of metformin-cytotoxicity by dichloroacetate via reprogramming glucose metabolism in cancer cells. Cancer Lett. 346, 300-308 (2014).
117. Stander, X.X., Stander, B.A. & Joubert, A.M. Synergistic anticancer potential of dichloroacetate and estradiol analogue exerting their effect via ROS-JNK-Bcl-2-mediated signalling pathways. Cell. Physiol. Biochem. 35, 1499-1526 (2015).
118. Erkkila, K., Aito, H., Aalto, K., Pentikainen, V. & Dunkel, L. Lactate inhibits germ cell apoptosis in the human testis. Mol Hum Reprod 8, 109-117 (2002).
119. Oosterlynck, D.J., Meuleman, C., Waer, M. & Koninckx, P.R. Transforming growth factor-beta activity is increased in peritoneal fluid from women with endometriosis. Obstet. Gynecol. 83, 287-292 (1994).
120. Pizzo, A., et al. Behaviour of cytokine levels in serum and peritoneal fluid of women with endometriosis. Gynecol. Obstet. Invest. 54, 82-87 (2002).
121. Young, V.J., Brown, J.K., Saunders, P.T. & Horne, A.W. The role of the peritoneum in the pathogenesis of endometriosis. Hum. Reprod. Update 19, 558-569 (2013).
122. Kaplan, D.R. & Miller, F.D. Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381-391 (2000).
123. Huang, E.J. & Reichardt, L.F. Trk receptors: roles in neuronal signal transduction. Annu. Rev. Biochem. 72, 609-642 (2003).
124. Gartner, A., et al. Hippocampal long-term potentiation is supported by presynaptic and postsynaptic tyrosine receptor kinase B-mediated phospholipase Cgamma signaling. J. Neurosci. 26, 3496-3504 (2006).
125. Yeo, G.S., et al. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat. Neurosci. 7, 1187-1189 (2004).
126. Voegeli, G., et al. Neurotrophin Genes and Antidepressant-Worsening Suicidal Ideation: A Prospective Case-Control Study. Int. J. Neuropsychopharmacol. 19(2016).
127. Hamdan, F.F., et al. High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies. Am. J. Hum. Genet. 101, 664-685 (2017).
128. Yu, X., Liu, L., Cai, B., He, Y. & Wan, X. Suppression of anoikis by the neurotrophic receptor TrkB in human ovarian cancer. Cancer Sci. 99, 543-552 (2008).
129. Yuan, Y., Ye, H.Q. & Ren, Q.C. Upregulation of the BDNF/TrKB pathway promotes epithelial-mesenchymal transition, as well as the migration and invasion of cervical cancer. Int. J. Oncol. 52, 461-472 (2018).
130. Dewanto, A., et al. Localization of TrkB and p75 receptors in peritoneal and deep infiltrating endometriosis: an immunohistochemical study. Reprod. Biol. Endocrinol. 14, 43 (2016).
131. Huang, Y., et al. Expression of tyrosine kinase receptor B in eutopic endometrium of women with adenomyosis. Arch. Gynecol. Obstet. 283, 775-780 (2011).
132. Greaves, E., et al. Estradiol is a critical mediator of macrophage-nerve cross talk in peritoneal endometriosis. Am J Pathol 185, 2286-2297 (2015).
133. Cazorla, M., et al. Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice. J. Clin. Invest. 121, 1846-1857 (2011).
134. Pelch, K.E., Sharpe-Timms, K.L. & Nagel, S.C. Mouse model of surgically-induced endometriosis by auto-transplantation of uterine tissue. J Vis Exp, e3396 (2012).
135. Huang, E.J. & Reichardt, L.F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677-736 (2001).
136. Minichiello, L. TrkB signalling pathways in LTP and learning. Nat. Rev. Neurosci. 10, 850-860 (2009).
137. Fujikawa, H., et al. High TrkB expression levels are associated with poor prognosis and EMT induction in colorectal cancer cells. J. Gastroenterol. 47, 775-784 (2012).
138. Okamura, K., et al. Expression of TrkB and BDNF is associated with poor prognosis in non-small cell lung cancer. Lung Cancer 78, 100-106 (2012).
139. Jia, S., et al. BDNF mediated TrkB activation contributes to the EMT progression and the poor prognosis in human salivary adenoid cystic carcinoma. Oral Oncol. 51, 64-70 (2015).
140. Ding, S., et al. Role of Brain-Derived Neurotrophic Factor in Endometriosis Pain. Reprod. Sci. 25, 1045-1057 (2018).
141. Barcena de Arellano, M.L., et al. Evidence of neurotrophic events due to peritoneal endometriotic lesions. Cytokine 62, 253-261 (2013).
142. Wessels, J.M., Leyland, N.A., Agarwal, S.K. & Foster, W.G. Estrogen induced changes in uterine brain-derived neurotrophic factor and its receptors. Hum. Reprod. 30, 925-936 (2015).
143. Luberg, K., Wong, J., Weickert, C.S. & Timmusk, T. Human TrkB gene: novel alternative transcripts, protein isoforms and expression pattern in the prefrontal cerebral cortex during postnatal development. J. Neurochem. 113, 952-964 (2010).
144. Fenner, B.M. Truncated TrkB: beyond a dominant negative receptor. Cytokine Growth Factor Rev. 23, 15-24 (2012).
145. Haapasalo, A., et al. Regulation of TRKB surface expression by brain-derived neurotrophic factor and truncated TRKB isoforms. J. Biol. Chem. 277, 43160-43167 (2002).
146. Yoshino, O., et al. Possible pathophysiological roles of mitogen-activated protein kinases (MAPKs) in endometriosis. Am. J. Reprod. Immunol. 52, 306-311 (2004).
147. Yoshino, O., et al. FR 167653, a p38 mitogen-activated protein kinase inhibitor, suppresses the development of endometriosis in a murine model. J. Reprod. Immunol. 72, 85-93 (2006).
148. Banu, S.K., Lee, J., Speights, V.O., Jr., Starzinski-Powitz, A. & Arosh, J.A. Selective inhibition of prostaglandin E2 receptors EP2 and EP4 induces apoptosis of human endometriotic cells through suppression of ERK1/2, AKT, NFkappaB, and beta-catenin pathways and activation of intrinsic apoptotic mechanisms. Mol. Endocrinol. 23, 1291-1305 (2009).
149. Lee, II & Kim, J.J. Influence of AKT on progesterone action in endometrial diseases. Biol. Reprod. 91, 63 (2014).
150. Barra, F., Ferro Desideri, L. & Ferrero, S. Inhibition of PI3K/AKT/mTOR pathway for the treatment of endometriosis. Br. J. Pharmacol. (2018).

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw