進階搜尋


下載電子全文  
系統識別號 U0026-1102201510450900
論文名稱(中文) 閃電與高空短暫發光現象之放電極性全球分佈統計
論文名稱(英文) The Global Distribution of the Discharge Polarity of Lightning and Transient Luminous Events
校院名稱 成功大學
系所名稱(中) 太空與電漿科學研究所
系所名稱(英) Institute of Space and Plasma Sciences
學年度 103
學期 1
出版年 104
研究生(中文) 陳毅倍
研究生(英文) Yi-Bei Chen
學號 la6001072
學位類別 碩士
語文別 中文
論文頁數 55頁
口試委員 指導教授-陳炳志
口試委員-許瑞榮
口試委員-蘇漢宗
中文關鍵字 閃電  高空短暫發光現象  極低頻磁場  高空大氣閃電影像儀 
英文關鍵字 Lightning  Transient Luminous Events (TLEs)  ELF magnetic field measurement  discharge polarity 
學科別分類
中文摘要 高空短暫發光現象由雲間閃電或雲對地閃電所引發,與閃電極性的關係在過去幾十年間已有相當的研究。例如,超過99%的紅色精靈由正極性雲對地閃電所觸發,而淘氣精靈目前仍沒定論。全球性閃電與高空短暫發光現象的放電極性統計可以讓我們了解閃電極性對於發生率的影響。由於目前並沒有單一資料來源可以進行這樣的研究,我們使用安裝於中央大學鹿林山天文台的極低頻波段磁場量測資料結合全球閃電定位網路資料庫(WWLLN)和ISUAL任務的高空短暫發光現象事件資料庫,進行閃電與高空短暫發光現象之放電極性全球分佈統計。
在本研究中,共分析了2010 年3 月至2011 年2 月區間中的閃電與TLEs
事件,藉由本論文所發展的演算法快速而正確的自極低頻波段磁場中解析出
放電極性。分析結果顯示在全球分佈上,距離台灣3000 公里內範圍內,閃電極性偵測率可以達到70%以上,在此範圍內,負閃電的數量約為全部閃電的90%。超過3000 公里範圍外,閃電的極性偵測率隨距離遞減至10%左右,而負閃電的比例下降至50%左右,這樣的結果也顯示了正閃電的平均能量較負閃電高,這也為最近的研究結果提供了佐證。
高空短電發光現象的統計結果顯示,資料期間內所觀測的紅色精靈大於95%都是由正極性閃電所引發,可判斷極性的48 個紅色精靈中僅有一個事件為負閃電相關,這和之前的研究結果相符。令人驚訝的是大於95%的淘氣精
靈都是由負極性閃電所引發,這和先前的研究不同,主要的原因是因為ISUAL 近年根據電波觀測結果做了時間修正,把儀器觸發時間的精確度由25毫秒修正到3 毫秒以內,使得誤判的比例大幅降低。在閃電與高空短暫現象的季節分佈中,可以觀察到TLEs 現象隨著閃電數量增加而增加,兩者之間的發生率存在著正相關,但是閃電的極性沒有顯著的季節性變化,這樣的結果也顯示高空短暫發光現象的分佈主要受閃電的密度與能量影響,放電極性的空間與時間差異極小,影響不大。
英文摘要 Transient Luminous Events (TLEs) are triggered by inter-cloud lightning (IC) or cloud to ground (CG) lightning. The polarity of lightning and TLEs have been studied for decades. For example, more than 99% of sprites are initiated by +CG lightning, but the polarity of elve-associated lightning is still unclear now. We can explore the connection between TLEs occurrence and lightning polarity by investigating the global distribution of the discharge polarity. Since there is no single-source data providing all necessary information for this study, multiple sources including the magnetic field measurements at extremely low frequency (ELF) band-pass, the database of the World Wild Lightning Location Network (WWLLN) and the ISUAL TLEs list are used to explore the discharge polarities of lightning and TLEs.
The polarities of the lightning and TLE events from Mar. 2010 to Feb. 2011 are investigated by an efficient algorithm developed in this study. The results show that the successful detection of lightning polarity can be up to 70% within 3000 km from Taiwan. In this region, -CG lightning accounts for approximately 90% of the total polarity-resolved events. Moreover, the polarity detection rate decays along the distance, as well as the ratio of –CG lightning also drops to about 50%. This result implies that +CG discharge is averagely more energetic than –CG events.
The in-depth analysis exhibits that the observed sprite in this period are dominantly triggered by +CG events (95%), only one -CG sprite out of 48 is confirmed and this result is comparable with previous findings. It is surprisingly founded that elves are majorly initiated by –CG lightning (95%), and this result is new and confident because the accuracy of ISUAL onboard trigger time is improved by other ELF study, and the uncertainty of ISUAL event trigger time shrinks from 25 milliseconds to 3 milliseconds. In addition, it is revealed that the density of TLE is proportional to lightning occurrence in the seasonal distribution of lightning and TLEs, but the polarity of lightning seems no significant seasonal variation is observed. This result also suggests that the distribution of TLEs is mainly governed by lightning density and energy, and less correlated with polarity.
論文目次 摘要 i
Extended Abstract iii
致謝 xi
圖目錄 xiv
表目錄 xvii
第一章 簡介 1
1.1 閃電的簡介 1
(1)雲對地閃電 3
(2)雲內閃電與雲間閃電 4
(3)雲對空閃電 5
1.2 高空短暫發光現象簡介與分類 5
1.3 研究動機及目的 10
第二章 科學資料介紹 12
2.1 極低頻磁場量測系統 12
2.2 全球閃電定位網路 15
2.3 ISUAL任務之TLEs 事件資料庫 17
第三章 極低頻磁場訊號分析方法 20
3.1 事件時間的擷取 20
3.1.1 WWLLN事件的電波資料擷取 21
3.1.2 ISUAL TLEs事件的電波資料擷取 22
3.2 3-σ排除法 24
3.3 峰值的挑選 25
3.4 極性的判定 27
3.5 演算法的修正及驗證 29
第四章 分析結果 33
4.1 雲對地閃電的分佈 33
4.2 閃電的極性分佈 36
4.3 TLEs現象之分佈統計 38
4.3.1 紅色精靈 38
4.3.2 淘氣精靈 40
4.3.3 紅色精靈與淘氣精靈的分佈 40
4.4 季節性的極性分佈 42
第五章 結論與未來展望 46
5.1 結論 46
5.2 未來展望 47
(1)改善演算法 47
(2)ELF波段磁場量測資料的擴充 48
參考文獻 49
參考文獻 Boeck, W. L., O. H. Vaughan, Jr., R. Blakslee, B. Vonnegut, and M. Brook (1992), Lightning induced brightening in the airglow layer, Geophys. Res. Lett., 19, 99-102.

Boeck, W. L., O. H. Vaughan Jr., R. J. Blakeslee, B. Vonnegut, M. Brook, and J. McKune (1995), Observations of lightning in the stratosphere, J. Geophys. Res., 100(D1), 1465–1475, doi:10.1029/94JD02432.

Chen, A. B., C. L. Kuo, Y. J. Lee, H. T. Su, R. R. Hsu, J. L. Chern, H. U. Frey, S. B. Mende, Y. Takahashi, H. Fukunishi, Y. S. Chang, T. Y. Liu, and L. C. Lee (2008), Global distributions and occurrence rates of transient luminous events, J. Geophys. Res., 113, A08306, doi:10.1029/2008JA013101.

Chen,B. C., H.-T. Su and R.-R. Hsu (2014), Energetics and geographic distribution of elve-producing discharges, J. Geophys. Res., 119, 1381-1391, doi: 10.1002/2013JA019470.

Chern, J. L., R. R. Hsu , H. T. Su, S. B. Mende , H. Fukunishi, Y. Takahashi, and L. C. Lee (2003), Global survey of upper atmospheric transient luminous events on the ROCSAT-2 satellite, J. Atmos. Sol. Terr. Phys., 65(5), 647-659, doi: 10.1016/S1364-6826(02)00317-6.


Christian, H. J., R. J. Blakeslee, D. J. Boccippio, W. L. Boeck, D. E. Buechler, K. T. Driscoll, S. J. Goodman, J. M. Hall, W. J. Koshak, D. M. Mach, and M. F. Stewart (2003), Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res., 108(D1), 4005, doi:10.1029/2002JD002347.

Cummer, S. A., W. A. Lyons, and M. A. Stanley (2013), Three years of lightning impulse charge moment change measurements in the United States, J. Geophys. Res. Atmos, 118, 5176–5189, doi:10.1002/jgrd.50442.

Dowden, R., J. Brundell, and C. Rodger (2002), VLF lightning location by time of group arrival (TOGA) at multiple sites, J. Atmos. Sol.-Terr. Phys., 64(7), 817–830, doi:10.1016/S1364-6826(02)00085-8.

Franz, R. C., R. J. Nemzek, and J. R. Winckler (1990), Television image of a large upward electrical discharge above a thunderstorm system, Science, 249, 48, doi: 10.1126/science.249.4964.48.

Frey, H. U., S. B. Mende, S. A. Cummer, A. B. Chen, R. R. Hsu, H. T. Su, Y. S. Chang, T. Adachi, H. Fukunishi, and Y. Takahashi (2005), Beta-type stepped leader of elve-producing lightning, Geophys. Res. Lett., 32, L13824, doi:10.1029/2005GL023080.


Frey, H. U., S. B. Mende, S. A. Cummer, J. Li, T. Adachi, H. Fukunishi, Y. Takahashi, A. B. Chen, R. R. Hsu, H. T. Su, and Y. S. Chang (2007), Halos generated by negative cloud-to-ground lightning, Geophys. Res. Lett., 34, L18801, doi:10.1029/2007GL030908.

Fukunishi, H., Y. Takahashi, M. Kubota, K. Sakanoi, U. S. Inan, and W. A. Lyons (1996), Elves: lightning‐induced transient luminous events in the lower ionosphere, Geophys. Res. Lett., 23(16), 2157–2160, doi:10.1029/96GL01979.

Glukhov, V.S. and U.S. Inan (1996), particle simulation of the time-dependent interaction with the ionosphere of rapidly varying lightning EMP, Geophys. Res. Lett., 23, 2193,

Huang, S. M., A. B. Chen, G. L. Yang, C. J. Hsu, C. L. Kuo, R. R. Hsu, S. A. Cummer, Y. Takahashi, and H. T. Su (2010), Radio Emission Recording Systems at NCKU-Taiwan, 2010 Asia-Pacific Radio Science Conference, GP-7.

Hutchins, M. L., R. H. Holzworth, J. B. Brundell, and C. J. Rodger (2012), Relative detection efficiency of the World Wide Lightning Location Network, Radio Sci., 47, RS6005, doi:10.1029/2012RS005049.

Inan, U. S., T. F. Bell, and J. V. Rodriguez (1991), Heating and ionization of the lower ionosphere by lightning, Geophys. Res. Lett., 18(4), 705–708, doi:10.1029/91GL00364.

Krehbiel, P. R. (1986), The electrical structure of thunderstorms in the earth’s electrical environment, eds. E. P. Krider and P. G. Roble, pp. 90, Washington, DC, National Academy Press.

Kuo,C. L., A.B. Chen, Y. J. Lee, L.Y. Tsai, R.K. Chou, R.R. Hsu, H.T. Su, L.C. Lee, S.A. Cummer, H.U. Frey, S.B. Mende, Y. Takahashi, and H. Fukunishi (2007), Modeling elves observed by FORMOSAT-2 satellite, J. Geophys Res., 112, A11312, doi:10.1029/2007JA01240.

Lyons, W. A. (1996), Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems, J. Geophys. Res., 101, 29641.

Lyons, A. and E. R. Williams (2003), Preliminary investigations of the phenomenology of cloud-to-stratosphere lightning discharges. Preprints, 17th Conf. on Atmospheric Electricity, St. Louis, MO, Amer. Meteor. Soc., 725–732.

MacKenzie, T. and H. Toynbee (1886), Meteorological phenomena, Nature, 33, 26.

Mackerras, D. (1985), Automatic short-range measurement of the cloud flash to ground flash ratio in thunderstorms, J. Geophys. Res., 90(D4), 6195–6201, doi:10.1029/JD090iD04p06195.

Milikh, G. M., K. Papadopoulos, and C.L. Chang (1995), On the Physics of high altitude lightning, Geophys. Res. Lett., 22, 85.

Orville, R. E., G. R. Huffines, R. B. William, L. H. Ronald, and L. C. Cummins (2002), The north american lightning detection network (NALDN)—first results: 1998–2000, Monthly Weather Review, 139, 5, 1305-1322.

Pasko, V. P., U. S. Inan, and T. F. Bell (1996), Sprites as luminous columns of ionization produced by quasi-electrostatic thundercloud fields, Geophys. Res. Lett., 23, 649.

Rakov, V.A and M. A.Uman (2007), Lightning physics and Effect, Cambridge University Press.

Rodger, C. J., Brundell, J. B., Dowden, R. L., and Thomson, N. R.(2004), Location accuracy of long distance VLF lightning locationnetwork, Ann. Geophys., 22, 747-758, doi:10.5194/angeo-22-747-2004.

Rowland, H.L, R.F. Fernsler, J.D. Huba, P.A. Bernhardt (1995), Geophys. Res. Lett., 22(4), 361–364.

Sentman, D. D., E. M. Wescott, D. L. Osborne, D. L. Hampton, and M. J. Heavner (1995), Preliminary results from the Sprites94 Aircraft Campaign: 1. Red sprites, Geophys. Res. Lett., 22(10), 1205–1208, doi:10.1029/95GL00583.

Su, H. T., T. Huang, C. Kuo, A. B. Chen, R. R. Hsu, S. B. Mende, H. U. Frey, H. Fukunishi, Y. Takahashi, and L. Lee (2004), Global distribution of TLEs based on the preliminary ISUAL data, AGU Fall Meeting Abstracts, AE51A-03.
Taranenko, Y. N., U. S. Inan, and T. F. Bell (1993a), The interaction with the lower ionosphere of electromagnetic pulses from lightning: Excitation of optical emissions, Geophys. Res. Lett., 20, 2675–2678, doi:10.1029/93GL02838.

Taranenko, Y. N., U. S. Inan, and T. F. Bell (1993b), Interaction with the lower ionosphere of electromagnetic pulses from lightning—Heating, attachment, and ionization, Geophys. Res. Lett., 20, 1539–1542, doi:10.1029/93GL01696.

Uman, M. A.(2001), The Lightning Discharge, Dover Books on Physics, Dover Publications.

Williams, E. R. (1998), The positive charge reservoir for sprite-producing lightning, J. Atmos. Sol. Terr. Phys., 60, 689-692.

Williams, E. R., E. Downes, R. Boldi, W. Lyons, and S. Hechman (2007), Polarity asymmetry of sprite-producing lightning: a paradox, Radio Sci., 42, RS2S17, doi:10.1029/2006RS003488.

Yukihiro, T. and Y. Kazuya (2009), SPRITE-SAT, 7th IAA Symposium on Small Satellites for Earth Observation, IAA-B7-0203.

Ziegler, C. L., D. R. MacGorman, J. E. Dye, and P. S. Ray (1991), A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm, J. Geophys. Res., 96(D7), 12,833–12,855, doi:10.1029/91JD01246.
郭政靈,福衛二號科學酬載所觀測到的sprites以及elves的分析,國立成功大學物理研究所博士論文 (2007)。

許長仁,BF-4極低頻天線校正及閃電電荷矩計算,國立成功大學物理研究所碩士論文 (2009)。

黃鵬宇,2010年極低頻磁場波形量測分析應用於高空短暫發光現象之極性統計,國立成功大學太空與電漿科學研究所碩士論文 (2012)。

黃崧銘,各類高空短暫發光現象的超低頻與極低頻至甚低頻電波特性,國立成功大學物理研究所博士論文 (2013)。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-02-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-02-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw