進階搜尋


下載電子全文  
系統識別號 U0026-1102201422200800
論文名稱(中文) 水泥基材料自癒能力之力電學檢測評估
論文名稱(英文) Electromechanical detection approach for assessing self-healing capabilities of cement-based materials
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 102
學期 1
出版年 103
研究生(中文) 林坤嶔
研究生(英文) Quen-Chin Lin
學號 n66994421
學位類別 碩士
語文別 中文
論文頁數 128頁
口試委員 指導教授-侯琮欽
共同指導教授-黃忠信
口試委員-鍾興陽
口試委員-王雲哲
口試委員-洪崇展
中文關鍵字 水泥基材料  自癒性材料  電阻量測技術 
英文關鍵字 cement-based materials  self-healing materials  electrical resistivity 
學科別分類
中文摘要   混凝土具有數千年的歷史,其起源最早可追溯至古埃及人。在邁入廿一世紀的今日,於土木業發展出的眾多創新想法之中,最受注目的可說是自癒性混凝土,其具備的自我維修特性不僅降低日後修繕所花費的資金、時間、人力,更能提高建物的耐久性:在正常使用的情況下延長使用年限,或者在面臨天災人禍時提供額外的應變時間。

  正因為這項技術之新穎,相關的配套措施仍未發展臻全,最切實的例子即為缺乏大規模數據資料庫的建立,以致人們無從判斷自癒混凝土的作用程度到達哪個階段。很久以前,往往必須等到出現肉眼可見的缺陷時,人們才會發現結構的破壞;百多年前開始發展的非破壞檢測技術(超音波、射線投影、熱影像等等),令人們擁有在損害擴大至肉眼可見前察覺的能力。然而自癒性混凝土啟動自癒能力的關鍵更加微小,在微結構開裂的一瞬間,這項能力就已經開始進行修復了。由於啟動條件與修復行為皆屬微結構等級,易使人產生『自癒性材料實際上並無發揮作用』的疑竇。

  有鑑於此,本研究採用電阻量測的方式,評估是否可將摻有自癒性材料的混凝土之自癒效果以電阻率變化的趨勢表現出來。由實驗結果可知,此電阻率變化趨勢明顯存在一個分水嶺:當自癒效果發揮至一定程度後,所測得之電阻率將大幅改變;因本研究選用之自癒材料在發揮作用後將提高電阻率,故可觀察到『自癒作用發揮到一定程度,其電阻率將大幅提升』的現象。
英文摘要 In the technical innovations of civil engineering, the most interesting advancement is so called “self-healing materials”, which used to be an expensive aerospace technology in the mid-twentieth century. These materials’ self-healing ability not only saves cost, time, and manpower from the repair of structures in the future, but also increases durability of buildings: by extending the useful life, and by providing additional response time when disaster occurs.

The researches about how to deal with self-healing materials in concrete are quite adequate, yet people don’t understand whether its healing ability do effect or not. In the past, people couldn’t notice those tiny cracks until which became visible; similarly, self-healing materials repair the damage in micro-structure which leads to a misunderstanding that self-healing materials might be useless.

Therefore, this study uses the method of electric resistivity measurement to determine whether self-healing materials do effect or not. The results show that while the level of self-repairing gets higher, the growth rate of resistivity will increase greater.
論文目次 第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究範圍 2
1-3 研究方法與流程 2

第二章 文獻回顧 4
2-1 前言 4
2-2 混凝土 6
2-2-1 品質 8
2-2-2 孔隙 9
2-2-3 物理劣化 13
2-2-4 化學劣化 17
2-3 自癒性材料 28
2-3-1 開環複分解聚合反應(ROMP) 29
2-3-2 陰離子聚合反應(AP) 31
2-3-3 鹼矽溶液水合反應 32
2-3-4 其他 32
2-4 電阻測量 35
2-4-1 其理論 35
2-4-2 其影響因素 38
2-4-3 其方法 61

第三章 實驗計畫 66
3-1 實驗變數 66
3-2 實驗材料 66
3-2-1 水泥 66
3-2-2 自癒性材料 68
3-3 試驗設備 70
3-4 試體製作 79
3-4-1 混凝土圓柱試體 79
3-4-2 電子顯微鏡試片 80
3-5 試驗方法 81
3-5-1 電阻測量 81
3-5-2 單軸載重試驗 82

第四章 結果分析 85
4-1 前言 85
4-2 電阻測量 85
4-2-1 數值來源 86
4-2-2 同狀態但不同含量的無破壞試體 87
4-2-3 同含量但不同狀態的無破壞試體 95
4-2-4 比較上升趨勢 102
4-2-5 抗壓強度數值比較 107
4-3 SEM與EDS 108
4-3-1 電子顯微影像 108
4-3-2 化學成分分析 112

第五章 結論與建議 116
5-1 結論 116
5-2 建議 118

參考文獻 119
參考文獻 1. 黃忠信 (2003),土木材料,台北:三民書局。
2. J.D. Suh, D.G. Lee (2008), Design and manufacture of hybrid polymer concrete bed for high-speed CNC milling machine, International Journal of Mechanics and Materials in Design, Vol. 4, Issue 2, pp. 113-121.
3. A.A. Alzaydi, S.A. Shihata, T. Alp (1990), The compressive strength of a new ureaformaldehyde-based polymer concrete, Journal of Materials Science, Vol. 25, Issue 6, pp. 2851-2856.
4. Y.J. Wang, H.C. Wu, V.C. Li (2000), Concrete reinforcement with recycled fibers, Journal of Materials in Civil Engineering, Vol. 12, No. 4, pp. 314-319.
5. T. Ochia, S. Okubob, K. Fukuib (2007), Development of recycled PET fiber and its application as concrete-reinforcing fiber, Cement and Concrete Composites, Vol. 29, Issue 6, pp. 448-455.
6. 劉佳奇、霍冀川、雷永林與李嫺 (2010),發泡劑及泡沫混凝土的研究進展,化學工業與工程,第27卷,第1期,pp. 73-78。
7. 黃兆龍 (2005),簡編混凝土性質與行為,台北:詹氏書局。
8. D. Janet (1990), Structural experimentation: The lintel arch, corbel and tie in Western Roman architecture, World Archaeology, Vol. 21, No. 3, Architectural Innovation (Feb. 1990), pp. 407-424.
9. L.C. Lancaster (2005), Concrete vaulted construction in Imperial Rome: Innovations in context, England: Cambridge University.
10. A.M. Brandt (2009), Cement-based composites: Materials, mechanical properties and performance, 2nd edition, New York: Taylor & Francis, pp. 154-170.
11. R. Kumar, B. Bhattacharjee (2003), Porosity, pore size distribution and in situ strength of concrete, Cement and Concrete Research, Vol. 33, pp. 155-164.
12. T.C. Powers, R.A. Helmuth (1953), Theory of volume changes in hardened Portland-cement paste during freezing, Highway Research Board Proceedings, Vol. 32, pp. 285-297.
13. H.S. Wong, N.R. Buenfeld (2006), Pore structure analysis using backscattered electron microscopy, Cem. Concr. Res., Vol. 36, pp. 990-1097.
14. K.K. Aligizaki (2005), Pore structure of cement-based materials: Testing, interpretation and requirements, New York: Taylor & Francis, pp. 4-29.
15. H.M. Jennings, J.W. Bullard, J.J. Thomas, J.E. Andrade, J.J. Chen, G.W. Scherer (2008), Characterization and modeling of pores and surface in cement paste, Journal of Advanced Concrete Technology, Vol. 6, No. 1, pp. 5-29.
16. D.N. Winslow (1968), The pore size distribution of Portland cement paste, Lafayette: Purdue University.
17. 李宜潔 (2007),防水結晶型添加劑對混凝土性質影響之研究,國立台灣海洋大學河海工程學系碩士學位論文。
18. T.C. Power (1958), Structure and physical properties of hardened Portland cement paste, Journal of the American Ceramic Society, Vol. 41, No. 1, pp. 1-6.
19. 吳英信 (2004),在無對流影響下混凝土熱傳導研究,私立中原大學土木工程學系碩士學位論文。
20. J.K. Green (1971), Reinstatement of concrete structures after fire, The Architects’ Journal, pp. 93-99.
21. B. Georgali, P.E. Tsakiridis (2005), Microstructure of fire-damaged concrete. A case study, Cement and Concrete Composites, Vol. 27, Issue 2, pp. 255-259.
22. T.E. Stanton (1940), Expansion of concrete through reaction between cement and aggregate, Proceedings of the American Society of Civil Engineers, Vol. 66, pp. 1781-1811.
23. J.E. Gillott (1975), Alkali-aggregate reactions in concrete, Engineering Geology, Vol. 9, Issue 4, pp. 303-326.
24. M.D.A Thomas, B. Fournier, K.J. Folliard (2013), Alkali-aggregate reactivity (AAR) facts book, Washington, DC: Federal Highway Administration. Office of Pavement Technology.
25. R.N. Swamy (2002), The Alkali-Silica Reaction in Concrete, New York: CRC Press.
26. E.G. Swenson (1957), Cement-aggregate reaction in concrete of a Canadian bridge, American Society for Testing Materials, Vol. 57, pp. 1043-1056.
27. D.W. Hadley (1961), Alkali reactivity of carbonate rocks - Expansion and dedolomitization, Highway Research Board, Vol. 40, pp. 462-474.
28. A.B. Poole, P. Sotiropoulos (1980), Reactions between dolomite aggregate and alkali pore fluids in concrete, Quarterly Journal of Engineering Geology, Vol. 13, No. 4, pp. 281-287.
29. 邵國瑋 (2006),卜作嵐材料抑制鹼-骨材反應之成效評估,國立中央大學土木工程研究所碩士論文。
30. V.G. Papadakis, C.G. Vayenas, M.N. Fardis (1989), A reaction engineering approach to the problem of concrete carbonation, American Institute of Chemical Engineers Journal, Vol. 35, No. 10, pp. 1639-1650.
31. A. Goudie, H. Viles (1997), Salt weathering hazards, Chichester: Wiley, p. 39.
32. M.J. Hammer (1975), Water and wastewater technology, John Wiley & Sons, p. 58.
33. G.A. Lager, TH. Armbruster, J. Faber (1987), Neutron and X-ray diffraction study of hydrogarnet Ca3Al2(O4H4)3, American Mineralogist, Vol. 72, pp. 756-765.
34. S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, S. Viswanathan (2001), Autonomic healing of polymer composites, Nature, Vol. 409, pp. 794-797.
35. M.D. Hager, P. Greil, C. Leyens, S. van der Zwaag, U.S. Schubert (2010), Self-healing materials, Advanced Materials, Vol. 22, Issue 47, pp. 5424-5430.
36. R.P. Wool (2008), Self-healing materials: a review, Soft Matter, Vol. 4, Issue 3, pp. 400-418.
37. E. Schlangen, C. Joseph (2009), Self-healing Processes in Concrete, Self-Healing Materials: Fundamentals, Design Strategies, and Applications (ed. S.K. Ghosh), pp. 141-182.
38. B.J. Blaiszik, N.R. Sottos, S.R. White (2008), Nanocapsules for self-healing materials, Composites Science and Technology, Vol. 68, Issues 3-4, pp. 978-986.
39. B.J. Blaiszik, M.M. Caruso, D.A. McIlroy, J.S. Moore, S.R. White, N.R. Sottos (2009), Microcapsules filled with reactive solutions for self-healing materials, Polymer, Vol. 50, Issue 4, pp. 990-997.
40. S.M. Bleay, C.B. Loader, V.J. Hawyes, L. Humberstone, P.T. Curtis (2001), A smart repair system for polymer matrix composites, Composites Part A: Applied Science and Manufacturing, Vol. 32, Issue 12, pp. 1767-1776.
41. Jody W.C. Pang, I.P. Bond (2005), A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility, Composites Science and Technology, Vol. 65, Issues 11-12, pp. 1791-1799.
42. H. Mihashi, Y. Kaneko, T. Nishiwaki, K. Otsuka (2000), Fundamental study on development of intelligent concrete characterized by self-healing capability for strength, Transactions of the Japan Concrete Institute, Vol. 22, pp. 441-450.
43. M. Wu, B. Johannesson, M. Geiker (2012), A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material, Construction and Building Materials, Vol. 28, Issue 1, pp. 571-583.
44. A. Rekondo, R. Martin, A.R. de Luzuriaga, G. Cabañero, H.J. Grande, I. Odriozola (2013), Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis, Materials Horizons, 2014.
45. T. Kishi, T.H. Ahn, A. Hosoda, S. Suzuki, H. Takaoka (2007), Self-healing behavior by cementitious recrystallization of cracked concrete incorporating expansive agent, Proceedings of the first international conference on self-healing materials, Noordwijk aan zee, the Netherlands, in April 18–20, 2007.
46. T.H. Ahn (2008), Development of self-healing concrete incorporating geo-materials: a study on its mechanism and behavior in cracked concrete, PhD dissertation, Department of Civil Engineering, The University of Tokyo, Japan.
47. T.H. Ahn, T. Kishi (2008), The effect of geomaterials on the autogenous healing behavior of cracked concrete, Proceeding of 2nd ICCRRR, Cape Town, South Africa, pp. 235-240.
48. T.H. Ahn, T. Kishi (2010), Crack self-healing behavior of cementitious composites incorporating various mineral admixtures, Journal of Advanced Concrete Technology, Vol. 8, No. 2, pp. 171-186.
49. U.K. Gollapudi, C.L. Knutson, S.S. Bang, M.R. Islam (1995), A new method for controlling leaching through permeable channels, Chemosphere, Vol. 30, No. 4, pp. 695-705.
50. H.M. Jonkers (2008), Self healing concrete: A biological approach, Self-healing materials: An alternative approach to 20 centuries of materials science (ed. S. van der Zwaag), pp. 195-204.
51. H.M. Jonkers, A. Thijssen, G. Muyzer, O. Copuroglu, Erik Schlangen (2010), Application of bacteria as self-healing agent for the development of sustainable concrete, Ecological Engineering, Vol. 36, Issue 2, pp. 230-235.
52. K. van Tittelboom, N. De Belie, W. De Muynck, W. Verstraete (2010), Use of bacteria to repair cracks in concrete, Cement and Concrete Research, Vol. 40, Issue 1, pp. 157-166.
53. Y. Sakai, Y. Kitagawa, T. Fukuta, M. Iiba (2003), Experimental study on enhancement of self-restoration of concrete beams using SMA wire, Proceedings of the SPIE, Vol. 5057, pp. 178-186.
54. S. El-Tawil, J. Ortega- Rosales (2004), Prestressing concrete using shape memory alloy tendons, ACI Structure Journal, Vol. 101, Issue. 6, pp. 846-851.
55. M.S. Saiidi, M. Sadrossadat-Zadeh, C. Ayoub, A. Itani (2007), Pilot study of behavior of concrete beams reinforced with shape memory alloys, Journal of Materials in Civil Engineering , Vol. 19, Issue 6, pp. 454-461.
56. A. Jefferson, C. Joseph, R. Lark, B. Isaacs, S. Dunn, B. Weager (2010), A new system for crack closure of cementitious materials using shrinkable polymers, Cement and Concrete Research, Vol. 40, Issue 5, pp. 795-801.
57. G.E. Monfore (1968), The electrical resistivity of concrete, Journal of the PCA Research and Development Laboratories, Vol. 10, No. 2, pp. 35-48.
58. B.P. Hughes, A.K.O. Soleit, R.W. Brierly (1985), New technique for determining the electrical resistivity of concrete, Magazine of Concrete Research, Vol. 37, No. 133, pp. 243-248.
59. D. Baweja, H. Roper, V. Sirivivatnanon (1996), Corrosion of steel in marine concrete: Long-term half-cell potential and resistivity data, Proceedings, Third CANMET/ACI International Conference on Concrete in Marine Environment, SP-163, pp. 89-110, American Concrete Institute, Farmington Hills, MI.
60. J.T. Wolsiefer (1991), Silica fume concrete: A solution to steel reinforcement corrosion in concrete, Proceedings, Second CANMET/ACI International Conference on Durability of Concrete, SP-126, pp. 527-553, American Concrete Institute, Farmington Hills, MI.
61. N.S. Berke, M.J. Scali, J.C. Regan, D.F. Shen (1991), Long-term corrosion resistance of steel in silica fume and/or fly ash containing concretes, Proceedings, Second CANMET/ACI International Conference on Durability of Concrete, SP-126, pp. 393-415, American Concrete Institute, Farmington Hills, MI.
62. N.S. Berke, M.P. Dallaire, M.C. Hicks (1992), Plastic mechanical, corrosion, and chemical resistance properties of silica fume (Microsilica) concretes, Proceedings, Fourth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, SP-132, pp. 1125-1149, American Concrete Institute, Farmington Hills, MI.
63. B.B. Hope, A.K. Ip (1987), Corrosion of steel in concrete made with slag cement, ACI Materials Journal, Vol. 84, No.6, pp. 525-531.
64. E. Hammond, T.D. Robson (1955), Comparison of electrical properties of various cements and concretes, The Engineer, Vol. 199, No. 5156, pp. 78-80, and No. 5166, pp. 114-115.
65. J.D. McNeill (1980), Electrical conductivity of soils and rocks, Technical Note TN-5, Geonics Ltd., Mississauga, Ontario, Canada.
66. E. Rasch, F.W. Hinrichsen (1908), Über eine Beziehung zwischen elektrischer Leitfähigkeit und Temperatur, Zeitschrift für Elektrochemie und angewandte physikalische Chemie, Vol. 14, Issue 5, pp. 41-46.
67. R.W. Spencer (1937), Measurement of the moisture content of concrete, Journal of the American Concrete Institute, Vol. 9, No. 1, pp. 45-61.
68. G.A. Woelfl, K. Lauer (1979), The electrical resistivity of concrete with emphasis on the use of electrical resistance for measuring moisture content, Cement, Concrete, and Aggregates, CCAGDP, Vol. 1, No. 2, pp. 64-67.
69. W. Elkey, E.J. Sellevold (1995), Electrical resistivity of concrete, Norwegian Road Research Laboratory, Publication No. 80, Oslo.
70. B.B. Hope, A.K. Ip, D.G. Manning (1985), Corrosion and electrical impedance in concrete, Cement and Concrete Research, Vol. 15, No. 3, pp. 525-534.
71. O.E. Gjørv, Ø. Vennesland, A.H.S. El-Busaidy (1977), Electrical resistivity of concrete in the oceans, Proceedings – 9th Annual Offshore Technology Conference, Houston, Texas, pp. 581-588.
72. F. Humkeler (1996), The resistivity of pore water solution - A decisive parameter of rebar corrosion and repair methods, Construction and Building Materials, Vol. 10, No. 5, pp. 381-389.
73. J.P. Broomfield (2007), Corrosion of steel in concrete 2nd edition, New York: Taylor & Francis.
74. W. Morris, E.I. Morenob, A.A. Sagüés (1996), Practical evaluation of resistivity of concrete in test cylinders using a Wenner array probe, Cement and Concrete Research, Vol. 26, Issue 12, pp. 1779-1787.
75. R.L. Henry (1964), Water vapor transmission and electrical resistivity of concrete, Y-R011-01001-025, Final Report, U.S. Naval Civil Engineering Laboratory, Port Hueneme, California.
76. J.D. Jackson (1999), Classical Electrodynamics 3rd edition, New York: John Wiley & Sons.
77. I.L.H. Hansson, C.M. Hansson (1983), Electrical resistivity measurements of Portland cement based materials, Cement and Concrete Research, Vol. 13, Issue 5, pp. 675-683.
78. P.B. Ishai, M.S. Talary, A. Caduff, E. Levy, Y. Feldman (2013), Electrode polarization in dielectric measurements: a review, Measurement Science and Technology, Vol. 24, No. 10, pp. 1-21.
79. S.G. Millard, K.R. Gowers (1991), The influence of surface layers upon the measurement of concrete resistivity, Proceedings, Second CANMET/ACI International Conference on Durability of Concrete, SP-126, pp. 1197 to 1220, American Concrete Institute, Farmington Hills, MI.
80. S.G. Millard (1991), Reinforced concrete resistivity measurement techniques, Proceedings, Institute of Civil Engineers, Part 2, pp. 71 to 88.
81. W.J. McCarter, G. Starrs, S. Kandasami, R. Jones, M. Chrisp (2009), Electrode configurations for resistivity measurements on concrete, ACI Materials Journal, Vol. 106, No. 3, pp. 258-264.
82. F. Wenner (1916), A method of measuring earth resistivity, Bulletin of the Bureau of Standards, Vol. 12, No. 4, pp. 469 to 478.
83. K.R. Gowers, S.G. Millard (1991), The effect of steel reinforcement bars on the measurement of concrete resistivity, British Journal of Non-Destructive Testing, Vol. 33, No. 11, pp. 551 to 554.
84. K.R. Gowers, S.G. Millard (1999), Measurement of concrete resistivity for assessment of corrosion severity of steel using Wenner technique, ACI Materials Journal, Vol. 96, No. 5, pp. 536 to 542.
85. 王心荻 (2009),試體參數對混凝土電阻值影響之研究,國立台灣海洋大學河海工程學系碩士學位論文。
86. D.A. Whiting, M.A. Nagi (2003), Electrical resistivity of concrete - A literature review, PCA R&D Serial No. 2457.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-02-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-02-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw