進階搜尋


下載電子全文  
系統識別號 U0026-1101201222364800
論文名稱(中文) 運動對人類嗜中性白血球的影響
論文名稱(英文) Effects of Exercise on Human Neutrophils
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 100
學期 1
出版年 101
研究生(中文) 許觀達
研究生(英文) Guan-Da Syu
學號 s5895156
學位類別 博士
語文別 英文
論文頁數 91頁
口試委員 指導教授-任卓穎
召集委員-林以行
口試委員-陳洵瑛
口試委員-蔡少正
口試委員-許勤
口試委員-王鐘賢
中文關鍵字 運動  嗜中性白血球  細胞凋亡  吞噬  爬行  氧化壓力 
英文關鍵字 exercise  neutrophil  apoptosis  phagocytosis  chemotaxis  oxidative stress 
學科別分類
中文摘要 人體的免疫系統可藉由運動進行調整,其中急性劇烈運動通常會弱化免疫能力,而長期中度運動則會改善免疫功能。嗜中性白血球是先天性免疫重要的一環,因為它會利用爬行、吞噬及氧爆作用對抗入侵的病原體,此外嗜中性白血球的生命期很短,其自發凋亡與活性氧化物質及粒腺體密切相關。因此,本研究假設急性劇烈及長期中度運動對人類嗜中性白血球功能及細胞凋亡有不同的影響,這不同的影響可能源自於氧化還原狀態及粒腺體。
選取十三位沒運動習慣的健康年輕男性,進行單次的急性劇烈運動(踩腳踏車直到因阻力增加而踩不動為止),之後分為運動組及控制組,八位運動組受試者,進行為期兩個月的長期中度運動(每週五次,每次三十分鐘,強度為劇烈運動的百分之六十),接著停止運動兩個月;五位控制組受試者,維持四個月沒有運動習慣的生活。其間運動組每個月進行一次額外的急性劇烈運動,控制組每兩個月進行一次額外的急性劇烈運動。每次急性劇烈運動前及運動後立刻抽血,分離嗜中性白血球,接著進行功能性(爬行能力、吞噬能力及氧爆作用)和細胞凋亡(磷脂絲胺酸外翻)測定,以及氧化還原狀態相關參數(胞內活性氧化物質及穀胱甘肽的氧化)和粒腺體相關參數測定。另外,運動組在第一次中度運動前及運動後立刻抽血,用來探討急性中度運動對嗜中性白血球的影響。
結果顯示急性劇烈運動刺激嗜中性白血球的爬行能力,但不影響吞噬能力及氧爆作用,急性劇烈運動還會使細胞偏向氧化態(增加胞內活性氧化物質及穀胱甘肽的氧化),並依序加速細胞凋亡(先促使粒腺體膜電位降低,隨後增加細胞磷脂絲胺酸外翻,最後增加粒腺體產生活性氧化物質的量)。相較之下,急性中度運動則少量的增加活性氧化物質,但不會影響嗜中性白血球的爬行能力、吞噬能力、氧爆作用及細胞凋亡。長期中度運動後,不但增加嗜中性白血球的爬行能力、吞噬能力及檸檬酸合成酶活性,還會增加穀胱甘肽的量,並延緩細胞自發性凋亡及粒腺體的破壞,這些長期中度運動對嗜中性白血球的影響是長久的,大部分在停止運動兩個月後依然有效。除此之外,急性劇烈運動對嗜中性白血球的影響,隨著長期中度運動而消失,在停止運動兩個月後大部分仍維持消失。最後,急性劇烈運動對嗜中性白血球的影響,可透過增加活性氧化物質成功模擬,但無法透過降粒腺體膜電位模擬成功。
因此當急性劇烈運動增加氧化壓力使得人類嗜中性白血球加速凋亡,長期中度運動藉由維持細胞的還原態,使得嗜中性白血球凋亡減緩。整體來說,長期中度運動改善先天性免疫,可能是藉由提升嗜中性白血球功能、延緩細胞凋亡以及提高對急性劇烈運動的耐受性來達成。
英文摘要 Exercise has been proposed to be a physiological way to modulate immunity; while acute severe exercise (ASE) usually impedes immunity, chronic moderate exercise (CME) improves it. Neutrophils are essential to the innate immunity because their immunological functions, such as chemotaxis, phagocytosis, and oxidative burst, are crucial to fight against invading pathogens. Moreover, neutrophils are short-lived leukocytes which undergo spontaneous apoptosis in reactive oxygen species (ROS) and mitochondria dependent manners. Therefore, we hypothesize that ASE and CME differentially regulate human neutrophil apoptosis and functions, possibly due to alterations in redox status and mitochondria.
Thirteen sedentary young males underwent an initial ASE (pedaling on a bicycle ergometer with increasing loads until exhaustion), and they were subsequently divided into exercise (n = 8) and sedentary control groups (n = 5). The exercise group underwent 2 months of CME (pedaling on the ergometer at moderate intensity for 30 min each day) followed by 2 months of detraining. The control group was abstained from regular exercise during these 4 months. Additional ASE paradigms were performed every month (in the exercise group) or every 2 months (in the control group). Neutrophils were isolated from blood specimens drawn at rest and immediately after each ASE for assaying functional performances (chemotaxis, phagocytosis, and oxidative burst) and spontaneous apoptosis (annexin-V binding on the outer surface) along with redox-related (cytosolic ROS and glutathione oxidation) and mitochondria-related parameters. Additional blood specimens were drawn from the exercise group before and immediately after the 1st bout of CME to determine the acute moderate exercise (AME) effects on neutrophils.
Our results showed that i) the initial ASE increased chemotaxis without altering phagocytosis and oxidative burst activity; ii) the initial ASE immediately increased the oxidative stress (cytosolic ROS and glutathione oxidation), and sequentially accelerated the reduction of mitochondrial membrane potential, the surface binding of annexin-V, and the generation of mitochondrial ROS; iii) AME induced a minor ROS elevation without altering neutrophil chemotaxis, phagocytosis, oxidative burst, and apoptosis; iv) CME increased chemotaxis, phagocytosis, and citrate synthase activity; v) CME up-regulated glutathione level, retarded spontaneous apoptosis and delayed mitochondria deterioration; vi) the CME effects remained largely intact after ceasing exercise for 2 months; and vii) the ASE effects on neutrophils vanished after CME and most remain vanished after detraining. Furthermore, most of the ASE effects on neutrophils were mimicked by adding exogenous H2O2, but not by suppressing mitochondrial membrane potential.
In conclusion, while ASE induced an oxidative state and resulted in acceleration of human neutrophil apoptosis, CME delayed neutrophil apoptosis by maintaining a reduced state for long periods even after detraining. As a whole, the CME-improved innate immunity may be partially explained by the superior neutrophil functions, lower apoptosis rate, and resistant to ASE challenge.
論文目次 Table of Contents
Acknowledgments - ii
List of Tables - vii
List of Figures - viii
List of Appendixes - x
Chinese Abstract - 1
Abstract - 3
Abbreviations - 6
I. Introduction - 8
1.1. Exercise and immunity - 8
1.2. Exercise and neutrophil functions - 9
1.3. Exercise and neutrophil apoptosis - 10
II. Hypothesis and Experimental Design - 12
III. Materials and Methods - 13
3.1. Subject selection - 13
3.2. Exercise paradigms and blood collection - 13
3.3. Neutrophil isolation and culture - 14
3.4. Measurement of neutrophil chemotaxis, phagocytosis, and oxidative burst - 15
3.5. Measurement of neutrophil redox status - 16
3.6. Measurement of neutrophil citrate synthase activity - 17
3.7. Measurements of neutrophil apoptosis-related parameters after prolonged incubation - 17
3.8. Reduction of neutrophil ΔΨm in vitro - 18
3.9. Elevation of neutrophil ROS in vitro - 18
3.10. Statistical analysis - 19
IV. Results - 20
4.1. Exercise effects on basic physiological parameters and exercise performance - 20
4.2. Effects of ASE on neutrophil functions in sedentary subjects - 20
4.3. Effects of ASE on neutrophil apoptosis in sedentary subjects - 21
4.4. Effects of ASE on neutrophil redox status in sedentary subjects - 21
4.5. Effects of CME and DT on functional performances of neutrophils collected under resting conditions - 22
4.6. Effects of CME and DT on apoptosis in neutrophils collected under resting conditions - 22
4.7. Effects of CME and DT on redox status in neutrophils collected under resting conditions - 23
4.8. Initial ASE effects on neutrophil functions were blunted by CME and restored after DT - 23
4.9. ASE effects on neutrophil redox status and apoptosis were prevented by CME and remained prevented after DT - 24
4.10. Effects of ΔΨm reduction on functions and apoptosis in neutrophils collected under resting conditions - 25
4.11. Effects of exogenous H2O2 application on functions and apoptosis in neutrophils collected under resting conditions - 25
V. Discussion - 27
5.1. Effects of ASE on neutrophil apoptosis - 27
5.1.1. The factors involve in ASE-induced neutrophil apoptosis - 27
5.1.2. What is the source of ASE-induced neutrophil cytosolic ROS? - 29
5.1.3. The downstream effects of ROS in neutrophils - 30
5.1.4. The physiological role of ASE-induced neutrophil apoptosis - 30
5.2. Effects of ASE on neutrophil functions - 31
5.3. Effects of CME and DT on neutrophil apoptosis - 32
5.3.1. The factors involve in CME-delayed neutrophil apoptosis - 32
5.3.2. The physiological role of CME-delayed neutrophil apoptosis - 32
5.3.3. How does neutrophil achieve an anti-oxidative state after CME? - 33
5.3.4. Effects of DT on neutrophil apoptosis - 34
5.3.5. Different physical fitness levels alter the ASE effects on neutrophil apoptosis - 35
5.4. Effects of CME and DT on neutrophil functions - 35
5.4.1. The factors involve in CME-improved neutrophil functions - 35
5.4.2. Different physical fitness levels alter the ASE effects on neutrophil functions - 37
5.4.3. Effects of ASE and CME on macrophage function - 37
5.5. Applications - 38
References - 40
Tables - 54
Figures - 60
Appendixes - 85
Vita - 90
參考文獻 References
1. Aoshiba K, Yasui S, Hayashi M, Tamaoki J, Nagai A (1999) Role of p38-mitogen-activated protein kinase in spontaneous apoptosis of human neutrophils. J Immunol 162: 1692-1700.
2. Asehnoune K, Strassheim D, Mitra S, Kim JY, Abraham E (2004) Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-kappa B. J Immunol 172: 2522-2529.
3. Bass DA, Parce JW, Dechatelet LR, Szejda P, Seeds MC, et al. (1983) Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol 130: 1910-1917.
4. Bassoe CF, Smith I, Sornes S, Halstensen A, Lehmann AK (2000) Concurrent measurement of antigen- and antibody-dependent oxidative burst and phagocytosis in monocytes and neutrophils. Methods 21: 203-220.
5. Blannin AK, Chatwin LJ, Cave R, Gleeson M (1996) Effects of submaximal cycling and long-term endurance training on neutrophil phagocytic activity in middle aged men. Br J Sports Med 30: 125-129.
6. Bock O, Mrowietz U (2001) Development of a new method of analysing chemotactic deactivation of human neutrophil granulocytes. J Biochem Biophys Methods 48: 257-268.
7. Ceddia MA, Voss EW, Jr., Woods JA (2000) Intracellular mechanisms responsible for exercise-induced suppression of macrophage antigen presentation. J Appl Physiol 88: 804-810.
8. Ceddia MA, Woods JA (1999) Exercise suppresses macrophage antigen presentation. J Appl Physiol 87: 2253-2258.
9. Chinda D, Nakaji S, Umeda T, Shimoyama T, Kurakake S, et al. (2003) A competitive marathon race decreases neutrophil functions in athletes. Luminescence 18: 324-329.
10. Chukhlovin A (2000) Enhanced ex vivo apoptosis of peripheral granulocytes is a sufficient factor of neutropenia following myeloablative chemotherapy. Leuk Res 24: 507-509.
11. Conus S, Perozzo R, Reinheckel T, Peters C, Scapozza L, et al. (2008) Caspase-8 is activated by cathepsin D initiating neutrophil apoptosis during the resolution of inflammation. J Exp Med 205: 685-698.
12. Dancey JT, Deubelbeiss KA, Harker LA, Finch CA (1976) Neutrophil kinetics in man. J Clin Invest 58: 705-715.
13. Davis JM, Kohut ML, Colbert LH, Jackson DA, Ghaffar A, et al. (1997) Exercise, alveolar macrophage function, and susceptibility to respiratory infection. J Appl Physiol 83: 1461-1466.
14. Davis JM, Kohut ML, Jackson DA, Colbert LH, Mayer EP, et al. (1998) Exercise effects on lung tumor metastases and in vitro alveolar macrophage antitumor cytotoxicity. Am J Physiol 274: R1454-1459.
15. Dibbert B, Weber M, Nikolaizik WH, Vogt P, Schoni MH, et al. (1999) Cytokine-mediated Bax deficiency and consequent delayed neutrophil apoptosis: a general mechanism to accumulate effector cells in inflammation. Proc Natl Acad Sci USA 96: 13330-13335.
16. Donowitz GR, Maki DG, Crnich CJ, Pappas PG, Rolston KV (2001) Infections in the neutropenic patient--new views of an old problem. Hematology Am Soc Hematol Educ Program: 113-139.
17. Elokda AS, Shields RK, Nielsen DH (2005) Effects of a maximal graded exercise test on glutathione as a marker of acute oxidative stress. J Cardiopulm Rehabil 25: 215-219.
18. Fadeel B, Ahlin A, Henter JI, Orrenius S, Hampton MB (1998) Involvement of caspases in neutrophil apoptosis: regulation by reactive oxygen species. Blood 92: 4808-4818.
19. Fehr HG, Lotzerich H, Michna H (1989) Human macrophage function and physical exercise: phagocytic and histochemical studies. Eur J Appl Physiol 58: 613-617.
20. Fossati G, Moulding DA, Spiller DG, Moots RJ, White MR, et al. (2003) The mitochondrial network of human neutrophils: role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis. J Immunol 170: 1964-1972.
21. Gabriel H, Muller HJ, Kettler K, Brechtel L, Urhausen A, et al. (1995) Increased phagocytic capacity of the blood, but decreased phagocytic activity per individual circulating neutrophil after an ultradistance run. Eur J Appl Physiol Occup Physiol 71: 281-284.
22. Garcia JJ, Bote E, Hinchado MD, Ortega E (2011) A single session of intense exercise improves the inflammatory response in healthy sedentary women. J Physiol Biochem 67: 87-94.
23. Gavrieli R, Ashlagi-Amiri T, Eliakim A, Nemet D, Zigel L, et al. (2008) The effect of aerobic exercise on neutrophil functions. Med Sci Sports Exerc 40: 1623-1628.
24. Geering B, Simon HU (2011) Peculiarities of cell death mechanisms in neutrophils. Cell Death Differ 18:1457-1469.
25. Giraldo E, Garcia JJ, Hinchado MD, Ortega E (2009) Exercise intensity-dependent changes in the inflammatory response in sedentary women: role of neuroendocrine parameters in the neutrophil phagocytic process and the pro-/anti-inflammatory cytokine balance. Neuroimmunomodulation 16: 237-244.
26. Glasser L, Fiederlein RL (1987) Functional differentiation of normal human neutrophils. Blood 69: 937-944.
27. Gleeson M (2007) Immune function in sport and exercise. J Appl Physiol 103: 693-699.
28. Gomez-Cabrera MC, Borras C, Pallardo FV, Sastre J, Ji LL, et al. (2005) Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol 567: 113-120.
29. Gomez-Cabrera MC, Domenech E, Vina J (2008) Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med 44: 126-131.
30. Hessel E, Haberland A, Muller M, Lerche D, Schimke I (2000) Oxygen radical generation of neutrophils: a reason for oxidative stress during marathon running? Clin Chim Acta 298: 145-156.
31. Hoffman-Goetz L, Pedersen BK (1994) Exercise and the immune system: a model of the stress response? Immunol Today 15: 382-387.
32. Hsu TG, Hsu KM, Kong CW, Lu FJ, Cheng H, et al. (2002) Leukocyte mitochondria alterations after aerobic exercise in trained human subjects. Med Sci Sports Exerc 34: 438-442.
33. Ji LL, Gomez-Cabrera MC, Steinhafel N, Vina J (2004) Acute exercise activates nuclear factor (NF)-kappaB signaling pathway in rat skeletal muscle. FASEB J 18: 1499-1506.
34. Kasahara Y, Iwai K, Yachie A, Ohta K, Konno A, et al. (1997) Involvement of reactive oxygen intermediates in spontaneous and CD95 (Fas/APO-1)-mediated apoptosis of neutrophils. Blood 89: 1748-1753.
35. Kimhi O, Drucker L, Neumann A, Shapiro H, Shapira J, et al. (2004) Fluorouracil induces apoptosis and surface molecule modulation of peripheral blood leukocytes. Clin Lab Haematol 26: 327-333.
36. Kohut ML, Davis JM, Jackson DA, Colbert LH, Strasner A, et al. (1998) The role of stress hormones in exercise-induced suppression of alveolar macrophage antiviral function. J Neuroimmunol 81: 193-200.
37. Krause R, Patruta S, Daxbock F, Fladerer P, Biegelmayer C, et al. (2001) Effect of vitamin C on neutrophil function after high-intensity exercise. Eur J Clin Invest 31: 258-263.
38. Kruger K, Frost S, Most E, Volker K, Pallauf J, et al. (2009) Exercise affects tissue lymphocyte apoptosis via redox-sensitive and Fas-dependent signaling pathways. Am J Physiol Regul Integr Comp Physiol 296: R1518-1527.
39. Lagranha CJ, Levada-Pires AC, Sellitti DF, Procopio J, Curi R, et al. (2008) The effect of glutamine supplementation and physical exercise on neutrophil function. Amino Acids 34: 337-346.
40. Liu YF, Chen HI, Wu CL, Kuo YM, Yu L, et al. (2009) Differential effects of treadmill running and wheel running on spatial or aversive learning and memory: roles of amygdalar brain-derived neurotrophic factor and synaptotagmin I. J Physiol 587: 3221-3231.
41. Lorne E, Zmijewski JW, Zhao X, Liu G, Tsuruta Y, et al. (2008) Role of extracellular superoxide in neutrophil activation: interactions between xanthine oxidase and TLR4 induce proinflammatory cytokine production. Am J Physiol Cell Physiol 294: C985-C993.
42. Lu Q, Ceddia MA, Price EA, Ye SM, Woods JA (1999) Chronic exercise increases macrophage-mediated tumor cytolysis in young and old mice. Am J Physiol 276: R482-489.
43. Maianski NA, Geissler J, Srinivasula SM, Alnemri ES, Roos D, et al. (2004) Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis. Cell Death Differ 11: 143-153.
44. McCarthy DA, Dale MM (1988) The leucocytosis of exercise. A review and model. Sports Med 6: 333-363.
45. Meshulam T, Proto P, Diamond RD, Melnick DA (1986) Calcium modulation and chemotactic response: divergent stimulation of neutrophil chemotaxis and cytosolic calcium response by the chemotactic peptide receptor. J Immunol 137: 1954-1960.
46. Mitra S, Abraham E (2006) Participation of superoxide in neutrophil activation and cytokine production. Biochim Biophys Acta 1762: 732-741.
47. Moulding DA, Quayle JA, Hart CA, Edwards SW (1998) Mcl-1 expression in human neutrophils: regulation by cytokines and correlation with cell survival. Blood 92: 2495-2502.
48. Mukhopadhyay P, Rajesh M, Hasko G, Hawkins BJ, Madesh M, et al. (2007) Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Nat Protoc 2: 2295-2301.
49. Nieman DC (2000) Is infection risk linked to exercise workload? Med Sci Sports Exerc 32: S406-S411.
50. Oishi K, Machida K (1997) Inhibition of neutrophil apoptosis by antioxidants in culture medium. Scand J Immunol 45: 21-27.
51. Ortega E, Collazos ME, Maynar M, Barriga C, De la Fuente M (1993) Stimulation of the phagocytic function of neutrophils in sedentary men after acute moderate exercise. Eur J Appl Physiol Occup Physiol 66: 60-64.
52. Ortega E, Giraldo E, Hinchado MD, Martinez M, Ibanez S, et al. (2006) Role of Hsp72 and norepinephrine in the moderate exercise-induced stimulation of neutrophils' microbicide capacity. Eur J Appl Physiol 98: 250-255.
53. Ortega E, Hinchado MD, Martin-Cordero L, Asea A (2009) The effect of stress-inducible extracellular Hsp72 on human neutrophil chemotaxis: a role during acute intense exercise. Stress 12: 240-249.
54. Ortega E, Marchena JM, Garcia JJ, Barriga C, Rodriguez AB (2005) Norepinephrine as mediator in the stimulation of phagocytosis induced by moderate exercise. Eur J Appl Physiol 93: 714-718.
55. Ortega E, Rodriguez MJ, Barriga C, Forner MA (1996) Corticosterone, prolactin and thyroid hormones as hormonal mediators of the stimulated phagocytic capacity of peritoneal macrophages after high-intensity exercise. Int J Sports Med 17: 149-155.
56. Panda A, Arjona A, Sapey E, Bai F, Fikrig E, et al. (2009) Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol 30: 325-333.
57. Peake J, Nosaka K, Suzuki K (2005) Characterization of inflammatory responses to eccentric exercise in humans. Exerc Immunol Rev 11: 64-85.
58. Peake J, Wilson G, Hordern M, Suzuki K, Yamaya K, et al. (2004) Changes in neutrophil surface receptor expression, degranulation, and respiratory burst activity after moderate- and high-intensity exercise. J Appl Physiol 97: 612-618.
59. Pedersen BK, Hoffman-Goetz L (2000) Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev 80: 1055-1081.
60. Pedersen L, Pilegaard H, Hansen J, Brandt C, Adser H, et al. (2011) Exercise-induced liver chemokine CXCL-1 expression is linked to muscle-derived interleukin-6 expression. J Physiol 589: 1409-1420.
61. Petersen AM, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98: 1154-1162.
62. Pitrak DL, Tsai HC, Mullane KM, Sutton SH, Stevens P (1996) Accelerated neutrophil apoptosis in the acquired immunodeficiency syndrome. J Clin Invest 98: 2714-2719.
63. Pyne DB, Smith JA, Baker MS, Telford RD, Weidemann MJ (2000) Neutrophil oxidative activity is differentially affected by exercise intensity and type. J Sci Med Sport 3: 44-54.
64. Quadrilatero J, Hoffman-Goetz L (2004) N-Acetyl-L-cysteine prevents exercise-induced intestinal lymphocyte apoptosis by maintaining intracellular glutathione levels and reducing mitochondrial membrane depolarization. Biochem Biophys Res Commun 319: 894-901.
65. Quindry JC, Stone WL, King J, Broeder CE (2003) The effects of acute exercise on neutrophils and plasma oxidative stress. Med Sci Sports Exerc 35: 1139-1145.
66. Rahman I, Kode A, Biswas SK (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1: 3159-3165.
67. Rollet-Labelle E, Grange MJ, Elbim C, Marquetty C, Gougerot-Pocidalo MA, et al. (1998) Hydroxyl radical as a potential intracellular mediator of polymorphonuclear neutrophil apoptosis. Free Radic Biol Med 24: 563-572.
68. Sastre J, Asensi M, Gasco E, Pallardo FV, Ferrero JA, et al. (1992) Exhaustive physical exercise causes oxidation of glutathione status in blood: prevention by antioxidant administration. Am J Physiol 263: R992-R995.
69. Saxton JM, Claxton D, Winter E, Pockley AG (2003) Peripheral blood leucocyte functional responses to acute eccentric exercise in humans are influenced by systemic stress, but not by exercise-induced muscle damage. Clin Sci (Lond) 104: 69-77.
70. Scharhag J, Meyer T, Gabriel HH, Schlick B, Faude O, et al. (2005) Does prolonged cycling of moderate intensity affect immune cell function? Br J Sports Med 39: 171-177.
71. Scheel-Toellner D, Wang K, Craddock R, Webb PR, McGettrick HM, et al. (2004) Reactive oxygen species limit neutrophil life span by activating death receptor signaling. Blood 104: 2557-2564.
72. Smiley ST, Reers M, Mottola-Hartshorn C, Lin M, Chen A, et al. (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci USA 88: 3671-3675.
73. Smith JA (1994) Neutrophils, host defense, and inflammation: a double-edged sword. J Leukoc Biol 56: 672-686.
74. Steensberg A, Morrow J, Toft AD, Bruunsgaard H, Pedersen BK (2002) Prolonged exercise, lymphocyte apoptosis and F2-isoprostanes. Eur J Appl Physiol 87: 38-42.
75. Su SH, Jen CJ, Chen HI (2011) NO signaling in exercise training-induced anti-apoptotic effects in human neutrophils. Biochem Biophys Res Commun 405: 58-63.
76. Sugiura H, Nishida H, Inaba R, Mirbod SM, Iwata H (2001) Effects of different durations of exercise on macrophage functions in mice. J Appl Physiol 90: 789-794.
77. Sugiura H, Nishida H, Mirbod SM (2002) Immunomodulatory action of chronic exercise on macrophage and lymphocyte cytokine production in mice. Acta Physiol Scand 174: 247-256.
78. Sureda A, Ferrer MD, Tauler P, Maestre I, Aguilo A, et al. (2007) Intense physical activity enhances neutrophil antioxidant enzyme gene expression. Immunocytochemistry evidence for catalase secretion. Free Radic Res 41: 874-883.
79. Suzuki K, Naganuma S, Totsuka M, Suzuki KJ, Mochizuki M, et al. (1996) Effects of exhaustive endurance exercise and its one-week daily repetition on neutrophil count and functional status in untrained men. Int J Sports Med 17: 205-212.
80. Tauler P, Aguilo A, Cases N, Sureda A, Gimenez F, et al. (2002) Acute phase immune response to exercise coexists with decreased neutrophil antioxidant enzyme defences. Free Radic Res 36: 1101-1107.
81. Tauler P, Aguilo A, Gimeno I, Guix P, Tur JA, et al. (2004) Different effects of exercise tests on the antioxidant enzyme activities in lymphocytes and neutrophils. J Nutr Biochem 15: 479-484.
82. Tuan TC, Hsu TG, Fong MC, Hsu CF, Tsai KK, et al. (2008) Deleterious effects of short-term, high-intensity exercise on immune function: evidence from leucocyte mitochondrial alterations and apoptosis. Br J Sports Med 42: 11-15.
83. van Raam BJ, Sluiter W, de Wit E, Roos D, Verhoeven AJ, et al. (2008) Mitochondrial membrane potential in human neutrophils is maintained by complex III activity in the absence of supercomplex organisation. PLoS One 3: e2013.
84. Vina J, Gimeno A, Sastre J, Desco C, Asensi M, et al. (2000) Mechanism of free radical production in exhaustive exercise in humans and rats; role of xanthine oxidase and protection by allopurinol. IUBMB Life 49: 539-544.
85. Wang JS, Huang YH (2005) Effects of exercise intensity on lymphocyte apoptosis induced by oxidative stress in men. Eur J Appl Physiol 95: 290-297.
86. Wang JS, Jen CJ, Chen HI (1995) Effects of exercise training and deconditioning on platelet function in men. Arterioscler Thromb Vasc Biol 15: 1668-1674.
87. Wang JS, Jen CJ, Kung HC, Lin LJ, Hsiue TR, et al. (1994) Different effects of strenuous exercise and moderate exercise on platelet function in men. Circulation 90: 2877-2885.
88. Wang JS, Lee T, Chow SE (2006) Role of exercise intensities in oxidized low-density lipoprotein-mediated redox status of monocyte in men. J Appl Physiol 101: 740-744.
89. Whyte MK, Meagher LC, MacDermot J, Haslett C (1993) Impairment of function in aging neutrophils is associated with apoptosis. J Immunol 150: 5124-5134.
90. Witko-Sarsat V, Mocek J, Bouayad D, Tamassia N, Ribeil JA, et al. (2010) Proliferating cell nuclear antigen acts as a cytoplasmic platform controlling human neutrophil survival. J Exp Med 207: 2631-2645.
91. Witko-Sarsat V, Pederzoli-Ribeil M, Hirsch E, Sozzani S, Cassatella MA (2011) Regulating neutrophil apoptosis: new players enter the game. Trends Immunol 32: 117-124.
92. Wolach B, Gavrieli R, Ben-Dror SG, Zigel L, Eliakim A, et al. (2005) Transient decrease of neutrophil chemotaxis following aerobic exercise. Med Sci Sports Exerc 37: 949-954.
93. Woods JA, Ceddia MA, Kozak C, Wolters BW (1997) Effects of exercise on the macrophage MHC II response to inflammation. Int J Sports Med 18: 483-488.
94. Woods JA, Davis JM, Mayer EP, Ghaffar A, Pate RR (1993) Exercise increases inflammatory macrophage antitumor cytotoxicity. J Appl Physiol 75: 879-886.
95. Woods JA, Davis JM, Smith JA, Nieman DC (1999) Exercise and cellular innate immune function. Med Sci Sports Exerc 31: 57-66.
96. Woods JA, Vieira VJ, Keylock KT (2006) Exercise, inflammation, and innate immunity. Neurol Clin 24: 585-599.
97. Yan H, Kuroiwa A, Tanaka H, Shindo M, Kiyonaga A, et al. (2001) Effect of moderate exercise on immune senescence in men. Eur J Appl Physiol 86: 105-111.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-01-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-01-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw