進階搜尋


下載電子全文  
系統識別號 U0026-1009201218114200
論文名稱(中文) 二氧化碳−水−砂岩系統之反應實驗
論文名稱(英文) Experiments of reactions in the CO2-water-sandstone system
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 100
學期 2
出版年 101
研究生(中文) 龍慧容
研究生(英文) Hui-Jung Lung
學號 l46994035
學位類別 碩士
語文別 中文
論文頁數 115頁
口試委員 指導教授-楊懷仁
口試委員-何恭算
口試委員-蕭炎宏
中文關鍵字 砂岩  超臨界二氧化碳  二氧化碳封存 
英文關鍵字 sandstone  supercritical carbon dioxide  carbon dioxide sequestration 
學科別分類
中文摘要 地質封存二氧化碳為緩和溫室效應的主要方法之一,但對封存圍岩的穩定性增添變數。本研究使用桂竹林層的魚藤坪砂岩及錦水頁岩與水及二氧化碳反應,量測反應後水溶液成份變化及岩石孔隙率改變,以瞭解封存環境可能發生之化學反應。
XRD分析結果顯示魚藤坪砂岩與錦水頁岩以石英及斜長石為主要組成礦物,含有少量綠泥石及白雲母。兩種岩石與水反應後,水中Na、K、Ca、Si濃度隨溫度上升而增加,Mg濃度變化則因由綠泥石溶解釋出而反之。加入二氧化碳後,反應後水樣中Na、Mg、K濃度顯著上升,反映長石、雲母與綠泥石溶解度提升。但水樣中的Ca與Si濃度則減少,顯示加入二氧化碳使碳酸鈣溶解度降低,且形成含Si之次生礦物。砂岩−水−二氧化碳反應後,水溶液中之Si、Ca、Mg濃度低於以鹵水為反應液體之實驗值,與鹵水對於岩石具較高溶解力相符,Na及K元素的溶出特性則主要受控於砂岩內之礦物組成。將二氧化碳注入砂岩−鹵水系統後,鹵水中陽離子上升幅度較與砂岩及二氧化碳反應後的水低,顯示鹵水對岩石溶解的影響大於飽和碳酸溶液之效應。根據實驗結果得知溫度對於砂岩中主要陽離子溶出的效應大於壓力,而二氧化碳之效應又大於溫度,顯示二氧化碳為影響封存圍岩的重要因子。
本研究以塊狀砂岩與超臨界二氧化碳反應後,孔隙率增加約0.1−1%,可知短時間尺度(14天)內孔隙率改變量對封存成效的影響不大,然而擊碎之砂岩顆粒(1.00−1.41 mm)與水及二氧化碳反應後,皆因鈣質膠結溶解產生崩解現象,雖然實驗材料之粒徑遠小於自然界岩層產狀,但此結果仍為封存系統中影響穩定性之主要因子提供制約,因此需進行監測以確保整體封存環境之完整性與安全性。
英文摘要 Carbon dioxide sequestration in deep geological formations is one of the major approach to mitigate greenhouse effect, but the role injected CO2 on the stability of the formations remains uncertain. In this study experiments were designed to model reactions between Yutengping sandstone/Chinshui shale, water, and CO2 to understand the reactions in CO2 sequestration system by measuring the cation concentration in water and the porosity changes in rocks.
The XRD results indicate that the major mineral components of Yutengping sandstone and Chinshui shale are quartz and plagioclase, with minor amounts of chlorite and muscovite. The concentrations of Na, K, Ca, Si in fluid after interacting with rock increased with increasing temperature. Nevertheless, the concentration of Mg decreased with increasing temperature, reflecting the role of chlorite. After injecting CO2 into the rock−water system, the concentrations of Na, Mg, K in water increased significantly in response to increasing the solubility of feldspar, muscovite and chlorite. In contrast, the Ca and Si concentrations in water decreased as a result of lowering calcium carbonate solubility with the presence of CO2 and precipitating Si-containing secondary minerals, respectively. Compared to the compositions of brine in equilibrium with rocks and CO2, the concentrations of Si, Ca, Mg in fluid after interacting with rocks and CO2 are relatively low, consistent with higher solubility of rock components in brine. The dissolution of Na and K was mainly controlled by the constituent minerals in the sandstone. With the addition of CO2, the cation concentrations in brine increases in extents lower than that for the increases in water, suggesting higher solubility of rock components in brine than in the carbonated saturated water. The effect of temperature on rock solubility is greater than that of pressure, and the effect of the presence of CO2 on rock solubility is greater than that of temperature.
In this study, the porosity of cylindrical rock chunk increased by ~0.1−1% after interacting with supercritical carbon dioxide. However, the crushed rocks (1.00−1.41 mm) disintegrated because of dissolution of the calcareous cement after interacting with CO2 and water. This result provided constraint on the major stabilizing factor in sequestration system althought the grain size of rocks was far less than the formations in the natural world. Consequently, monitoring is required to ensure the integrity and security of the sequestration system.
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 VII
圖目錄 IX
第一章 緒論 1
1.1 全球氣候變遷與二氧化碳封存 1
1.2 二氧化碳地質封存 5
1.3 二氧化碳與砂岩 7
1.4 文獻分析 10
1.4.1 反應實驗設備之設計 10
1.4.2 砂/頁岩−(鹵)水−二氧化碳之化學反應實驗結果 12
1.5 研究目的 14
第二章 研究方法 15
2.1 實驗流程 15
2.2 實驗材料 16
2.3 反應條件與代號說明 19
2.3.1 化學反應實驗 19
2.3.2 孔隙率變化實驗 19
2.3.3 代號說明 20
2.4 實驗設備 21
2.4.1 封閉式反應容器(cardice pressurized reaction cell,CPRC) 21
2.4.2 注入式反應容器(injection pressurized reaction cell,IPRC) 22
2.4.3 實驗參考組(reference group,RG) 22
2.5 孔隙率量測方法 24
2.6 分析儀器 25
2.6.1 X光粉末繞射儀 25
2.6.2 感應耦合電漿光學放射光譜儀 25
2.6.3 掃描式電子顯微鏡 25
第三章 實驗分析結果 27
3.1 岩石成份:岩石粉末之XRD分析結果 27
3.2 水−岩反應後水成份之變化 31
3.3 岩石−水−二氧化碳反應之水溶液成份變化 35
3.3.1 CPRC實驗結果 36
3.3.2 IPRC實驗結果 37
3.4 水−岩及岩石−水−二氧化碳反應後水樣pH值之變化 53
3.5 水−岩及岩石−水−二氧化碳反應後之固體樣本變化 56
3.6 岩石−超臨界二氧化碳於100℃−200 kg/cm2反應後之孔隙率變化 58
第四章 討論 59
4.1 砂(頁)岩−水−二氧化碳系統組成物質成份對化學反應結果之影響 59
4.2 二氧化碳對岩石中主要陽離子溶出量之影響 70
4.3 溫度與壓力對於砂岩主要陽離子溶出量之效應 82
4.4 二氧化碳封存系統中可能之化學反應 94
4.5 二氧化碳封存系統中,礦物溶解與沉澱對封存成效之影響 105
第五章 結論 110
參考文獻 112
參考文獻 Adams, E.E., and K. Caldeira, Ocean storage of CO2, Elements, 4(5), 319−324 (2008).
Andersson, A.J., F.T. Mackenzie, and A. Lerman, Costal ocean CO2–carbonic acid–carbonate sediment system of the Anthropocene, Global Biogeochemical Cycles, 20, GB1S92 (2006)
Bachu, S., W.D. Gunter, and E.H. Perkins, Aquifer disposal of CO2-hydrodynamic and mineral trapping, Energy Conversion and Management, 35(4), 269−279 (1994).
Benson, S.M., and D.R. Cole, CO2 sequestration in deep sedimentary formations, Elements, 4(5), 325−331 (2008).
Broecker, W.S., Thermohaline circulation, the achilles heel of our climate system: Will man-made CO2 upset the current balance?, Science, 278(5343), 1582−1588 (1997).
Cole, D.R., and H.C. Monger, Influence of atmospheric CO2 on the decline of C4 plants during the last deglaciation, Nature, 368(6471), 533−536 (1994).
Chou, J.T., A stratigraphic and sedimentary analysis of the Miocene in northern Taiwan, Petroleum Geology of Taiwan, 7, 145−189(1970).
Garrels, R.M., C.L. Christ, Solutions, minerals, and equilibria, Harper & Row, New York, 450(1965)
Gaus, I., M. Azaroual, and I. Czernichowski-Lauriol, Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea), Chemical Geology, 217(3−4), 319−337 (2005).
Gorrell, H.A., Classification of formation waters based on sodium chloride content, Amer. Assoc. Petrol. Geol. Bull., 42, 2513 (1953).
Groisman, P.Y., R.W. Knight, D.R. Easterling, T.R. Karl, G.C. Hegerl, and V.A.N. Razuvaev, Trends in intense precipitation in the climate record, Journal of Climate, 18(9), 1326−1350 (2005).
Gunter, W.D., and E.H. Perkins, Aquifer disposal of CO2-rich gases-reaction design for added capacity, Energy Conversion and Management, 34(9−11), 941−948 (1993).
Gunter, W.D., B. Wiwchar, and E.H. Perkins, Aquifer disposal of CO2-rich greenhouse gases: Extension of the time scale of experiment for CO2-sequestering reactions by geochemical modelling, Mineralogy and Petrology, 59(1−2), 121−140 (1997).
Gysi, A. P., and A. Stefansson, Experiments and geochemical modeling of CO2 sequestration during hydrothermal basalt alteration, Chemical Geology, 306, 10-28 (2012).
Haugan, P.M., and H. Drange, Effects of CO2 on the ocean environment, Energy Conversion and Management, 37(6−8), 1019−1022 (1996).
Hulme, M., and G. J. Jenkins, Climate change scenarios for the U.K.: Scientific report. UKCIP technical report No 1. Climate Research Unit. Norwich (1998).
IPCC, Underground geological storage. In: B. Metz, O. Davidson, HC. de Coninck, M. Loos, and L.A. Meyer (eds), IPCC Special Report on Carbon Dioxide Capture and Storage, prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, USA (2005).
Johns, T.C., J.M. Gregory, W.J. Ingram, C.E. Johnson, A. Jones, J.A. Lowe, J.F.B. Mitchell, D.L. Roberts, D.M.H. Sexton, D.S. Stevenson, S.F.B. Tett, M.J. Woodage, Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios, Climate Dynamics, 20(6), 583−612 (2003).
Kaszuba, J.P., D.R. Janecky, and M.G. Snow, Experimental evaluation of mixed fluid reactions between supercritical carbon dioxide and NaCl brine: Relevance to the integrity of a geologic carbon repository, Chemical Geology, 217(3−4), 277−293 (2005).
Ketzer, J.M., R. Iglesias, S. Einloft, J. Dullius, R. Ligabue, and V. de Lima, Water-rock-CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil, Applied Geochemistry, 24(5), 760−767 (2009).
Kharaka, Y.K., D.R. Cole, S.D. Hovorka, W.D. Gunter, K.G. Knauss, and B.M. Freifeld, Gas-water-rock interactions in Frio Formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basins, Geology, 34(7), 577−580 (2006).
Lagneau, V., A. Pipart, and H. Catalette, Reactive transport modelling of CO2 sequestration in deep saline aquifers, Oil & Gas Science and Technology-Revue D Ifp Energies Nouvelles, 60(2), 231−247 (2005).
Lu, H.Y., C.K. Lin, W. Lin, T.S. Liou, W.F. Chen, and P.Y. Chang, A natural analogue for CO2 mineral sequestration in Miocene basalt in the Kuanhsi-Chutung area, Northwestern Taiwan, International Journal of Greenhouse Gas Control, 5(5), 1329−1338 (2011a).
Lu, P., Q. Fu, W. E. Seyfried, Jr., A. Hereford, and C. Zhu, Navajo Sandstone-brine-CO2 interaction: implications for geological carbon sequestration, Environmental Earth Sciences, 62(1), 101-118 (2011b).
Luquot, L., M. Andreani, P. Gouze, and P. Camps, CO2 percolation experiment through chlorite/zeolite-rich sandstone (Pretty Hill Formation - Otway Basin-Australia), Chemical Geology, 294, 75−88 (2012).
Manabe, S., and R.J. Stouffer, Multiple-century response of a coupled ocean-atmosphere model to an increase of atmospheric carbon-dioxide, Journal of Climate, 7(1), 5−23 (1994).
Marland, G, T.A. Boden, and R.J. Andres, Global, regional, and national CO2 emissions. In: Trends: A compendium of data on global change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S., Department of Energy, Oak Ridge, TN, USA (2007).
McKenney, D.W., J.H. Pedlar, K. Lawrence, K. Campbell, and M.F. Hutchinson, Potential impacts of climate change on the distribution of North American trees, Bioscience, 57(11), 939−948 (2007).
Michael, K., A. Golab, V. Shulakova, J. Ennis-King, G. Allinson, S. Sharma, and T. Aiken, Geological storage of CO2 in saline aquifers-A review of the experience from existing storage operations, International Journal of Greenhouse Gas Control, 4(4), 659−667 (2010).
Oelkers, E.H., and D.R. Cole, Carbon Dioxide Sequestration: A Solution to a Global Problem, Elements, 4(5), 305−310 (2008).
Oelkers, E.H., S.R. Gislason, and J. Matter, Mineral Carbonation of CO2, Elements, 4(5), 333−337 (2008).
Oldenburg, C., Migration mechanisms and potential impacts of CO2 leakage and seepage. In: Wilson EJ, Gerard D (eds) Carbon Capture and Sequestration: Integrating Technology, Monitoring, Regulation, Blackwell Publishing, 127−146 (2007).
Parmesan, C., Ecological and evolutionary responses to recent climate change, in Annual Review of Ecology Evolution and Systematics, edited, pp. 637−669 (2006).
Patz, J.A., P.R. Epstein, T.A. Burke, and J.M. Balbus, Global climate change and emerging infectious diseases, Jama-Journal of the American Medical Association, 275(3), 217−223 (1996).
Reid, R.C., J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th ed., McGraw-Hill book co., New York (1987).
Rignot, E.J., Fast recession of a West Antarctic glacier, Science, 281(5376), 549−551 (1998).
Rosenbauer, R.J., T.K. Koksalan, and J.L. Palandri, Experiental investigation of CO2–brine–rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers, Fuel Processing Technology, 86, 1581–1597 (2005).
Wiebe, R., and V.L. Gaddy, The solubility of carbon dioxide in water at various temperatures from 12 to 40° and at pressures to 500 atm, J. Am. Chem. Soc., 62(4), 815–817 (1940).
Wiebe, R., The binary system carbon dioxide-water under pressure, Chem. Rev., 21, 475–481 (1941).
Wigand, M., J.W. Carey, H. Schütt, E. Spangenberg, and J. Erzinger, Geochemical effects of CO2 swquestration in sandstone under simulated in sutu conditions of deep saline aquifers. Appl. Geochem, 23, 2735−2745 (2008).
Worden, R.H., and S.A. Barclay, Internally-sourced quartz cement due to externally-derived CO2 in sub-arkosic sandstones, North Sea, Journal of Geochemical Exploration, 69, 645−649 (2000).
張堯婷,超臨界二氧化碳−水−長石系統之礦物及化學反應,國立成功大學地球科學系碩士論文(2011)。
經濟部能源局,我國燃料燃燒CO2排放統計與分析,經濟部能源局(2011)。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-09-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-09-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw