進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1008202013300200
論文名稱(中文) 結合3D GIS平台與機器人搜救資訊之災難救援輔助系統
論文名稱(英文) A disaster rescue support system integrated with a 3D GIS platform and robot captured data
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 108
學期 2
出版年 109
研究生(中文) 林仕穎
研究生(英文) Shih-Ying Lin
學號 N96071431
學位類別 碩士
語文別 中文
論文頁數 53頁
口試委員 指導教授-侯廷偉
口試委員-周榮華
口試委員-何明字
口試委員-曾紹崟
中文關鍵字 3D GIS  災難資訊整合平台  災難應變機器人  救援機器人 
英文關鍵字 3D GIS  Disaster information integration platform  disaster response robot  rescue robot 
學科別分類
中文摘要 天災頻繁,隨著科技的發展,機器人開始投入救災的行列,對於人類無法前往偵查搜救的區域,則倚靠災難應變機器人,災難應變機器人著重於蒐集災害訊息(災區空拍、內部搜索)與協尋受難者。然而災難發生,災害的訊息眾多且混雜,需要有一套資訊系統能整合災害的資訊並且將資料進行後處理與利用,以提高資料可用性並能輔助決策者觀察災區情況以下達決策。
為了呈現災區與相關災難資訊,輔佐救災單位進行決策,本研究建置一3D GIS網際網路整合平台,並開發一履帶式災難應變機器人。透過平台所建置的災區3D仿真模型、地理資訊、醫療資訊、決策輔助工具等,使用者可以觀察災區空間資訊以及災難應變機器人取得之搜救訊息。此機器人具有自動避障、路徑規劃、同步定位與地圖建構等功能,並搭載相機、熱像儀、麥克風陣列,可進行影像回傳、熱成像回傳、聲音搜索等功能以協助搜尋受難者。配合此機器人設計一人機介面,藉以遠端控制機器人與整合感測器取得之訊息。同時利用通訊傳輸結合機器人與3D GIS平台,於平台上呈現機器人所紀錄之災區內部地圖、影像及熱成像等資料。相較於現有之災難應變資訊系統,本研究所建制之系統,整合災區附近之醫療資訊,例如附近之醫院以及各醫院急診部門之分級以及空床數等,特別適合負責緊急醫療之使用者使用。

英文摘要 Disasters Response Robots are introduced to assist search and rescue teams. For the regions where the rescuer and rescue dogs can not arrive, disaster response robots would be engaged to search and bring information back. The primary goal of the robots is to collect the disaster information and assist rescuer in finding victims. However, disaster information is numerous and confusing. An information system that integrates disaster information and post-processed data would improve the availability of data and assist decision makers.
A disaster support information system, based on an open source 3D GIS platform, and a disaster response robot are developed in this research. The information system integrates the data collected by the response robots and specially, the information on the emergency operation departments of local hospitals. The robot can automatically perform obstacle avoiding, path planning, and simultaneous localization and mapping. A camera, a thermal imager and a microphone array are carried for victim searching. A human-machine interface to remote controlling the robot and to show the live video and sensor information is developed. The information captured by the robot is integrated with the 3D GIS platform. The indoor map of some disaster areas, recorded by the robot can be displayed on the platform. User can observe the disaster information for use with the 3D simulated building models, map, medical information and decision-making tools on the platform. As compared with other related information system, this system provides medical information, such as the location of local hospitals, the capability and capacity of the emergency departments of these hospitals. The medical information is very import to the medical staff in the rescue team.
論文目次 摘要 I
Extended Abstract II
致謝 IX
章節目錄 X
表目錄 XII
圖目錄 XIII
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 2
1-3 研究貢獻 2
1-4 論文架構 3
第二章 文獻探討 4
2-1 災難應變機器人研究 4
2-2 同步定位與地圖建構(SLAM) 10
2-3 救災資訊整合研究 11
2-4 3D GIS研究 13
第三章 系統設計與架構 14
3-1 機器人系統架構 14
3-2 避障與路徑規劃 17
3-3 同步定位與建構地圖(SLAM) 19
3-4 姿態感測 21
3-5 熱成像 22
3-6 聲音搜索 23
3-7 機器人操作介面 24
3-8 災難救援輔助系統 26
3-8-1 Cesium 介紹 26
3-8-2 災難救援輔助系統架構 28
3-8-3 災難救援輔助操作介面 30
第四章、實驗設計與結果 37
4-1 災難情境模擬 37
4-2 實驗結果與討論 44
第五章、結論與未來工作 45
5-1 結論 45
5-2 未來工作 45
參考文獻 47
附錄 53

參考文獻 [1] Robin R. Murphy, Disaster Robotics, The MIT Press, 2014. ISBN-10 0262027356.
[2] The New York Times, "How a robotics pioneer uses A.I. to enhance rescue bots ", available from https://www.nytimes.com/paidpost/texas-aandm/how-a-robotics-pioneer-uses-ai-to-enhance-rescuebots.html, retrieved Dec. 25, 2018.
[3] K. Nagatani, S. Kiribayashi, Y. Okada, K. Otake, K. Yoshida, S. Tadokoro, T. Nishimura, T. Yoshida, E. Koyanagi, M. Fukushima, S. Kawatsuma, "Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots, "Journal of Field Robotics, vol. 30, Issue 1, Pages 44–63, January / February 2013, doi: 10.1002/rob.21439
[4] T. Yoshida, K. Nagatani, S. Tadokoro, T. Nishimura, E. Koyanagi, Improvements to the rescue robot Quince toward future indoor surveillance missions in the Fukushima Daiichi Nuclear Power Plant. In: K. Yoshida, S. Tadokoro(eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol. 92 Springer, Berlin, Heidelberg.
[5] J. Fukuda, M. Konyo, E. Takeuchi and S. Tadokoro, "Remote vertical exploration by active scope camera into collapsed buildings," 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, 2014, pp. 1882-1888, doi: 10.1109/IROS.2014.6942810.
[6] Y. Yamauchi, A. Ishii, S. Araki, Y. Ambe, M. Konyo, K. Tadakuma, S. Tadokoro, "A robotic thruster that can handle hairy flexible cable of serpentine robots for disaster inspection," 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Auckland, 2018, pp. 107-113, doi: 10.1109/AIM.2018.8626018.
[7] M. Arai, Y. Tanaka, S. Hirose, H. Kuwahara, S. Tsukui, "Development of Souryu IV" and "Souryu V:serially connected crawler vehicles for in-rubble serarching operations" Journal of Field Robotics, vol. 25, No.1, pp.31-65, 2008, doi: 10.1002/rob.v25:1/2
[8] C. Marques, J. Cristovao, P. Lima, J. Frazao, I. Ribeiro and R. Ventura, "RAPOSA: semi-autonomous robot for rescue operations," 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, 2006, pp. 3988-3993, doi: 10.1109/IROS.2006.281836.
[9] G. Athanasiou, A. Amditis, N. Riviere, E. Makri, A. Bartzas, A. Anyfantis, R. Werner, D. Axelsson, E. di Girolamo, O. Balet, M. Schaap, N. Kerle, N. Bozabalian, G. Marafioti, J. Berzosa, A. Gustafsson, "INACHUS: Integrated wide area situation awareness and survivor localization in search and rescue operations" In: Springer Book "Geo-information Technologies and Earth Observation Systems for Global Changes and Natural Disaster Management" 2016.
[10] S. Sharmin, S. I. Salim and K. R. I. Sanim, "A low-cost urban search and rescue robot for developing countries," 2019 IEEE International Conference on Robotics, Automation, Artificial-intelligence and Internet-of-Things (RAAICON), Dhaka, Bangladesh, 2019, pp. 60-64, doi: 10.1109/RAAICON48939.2019.27.
[11] H. Durrant-Whyte and T. Bailey, "Simultaneous localization and mapping: part I," in IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 99-110, June 2006, doi: 10.1109/MRA.2006.1638022.
[12] T. Bailey and H. Durrant-Whyte, "Simultaneous localization and mapping (SLAM): part II," in IEEE Robotics & Automation Magazine, vol. 13, no. 3, pp. 108-117, Sept. 2006, doi: 10.1109/MRA.2006.1678144.
[13] T. Bailey, J. Nieto, J. Guivant, M. Stevens and E. Nebot, "Consistency of the EKF-SLAM algorithm," 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, 2006, pp. 3562-3568, doi: 10.1109/IROS.2006.281644.
[14] B. Steux and O. E. Hamzaoui, "Coreslam : a slam algorithm in less than 200 lines of c code, " Mines ParisTech, Center for Robotics, Paris, France, Tech. Rep., 2009.
[15] M. Michael, T. Sebastian, K. Daphne and W. Ben, "Fastslam 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges", Proceeding of 16th International Joint Conferences on Artificial Intelligence (IJCAI), vol. 2, pp. 1151-1156, Aug. 2003.
[16] Z. Kurt-Yavuz and S. Yavuz, "A comparison of EKF, UKF, FastSLAM2.0, and UKF-based FastSLAM algorithms," 2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES), Lisbon, 2012, pp. 37-43, doi: 10.1109/INES.2012.6249866.
[17] J. M. Santos, D. Portugal and R. P. Rocha, "An evaluation of 2D SLAM techniques available in robot operating system," 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Linkoping, 2013, pp. 1-6, doi: 10.1109/SSRR.2013.6719348.
[18] G. Grisetti, R. Kümmerle, C. Stachniss and W. Burgard, "A tutorial on graph-based SLAM," in IEEE Intelligent Transportation Systems Magazine, vol. 2, no. 4, pp. 31-43, winter 2010, doi: 10.1109/MITS.2010.939925.
[19] W. Hess, D. Kohler, H. Rapp and D. Andor, "Real-time loop closure in 2D LIDAR SLAM," 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, 2016, pp. 1271-1278, doi: 10.1109/ICRA.2016.7487258.
[20] M. Filipenko and I. Afanasyev, "Comparison of various SLAM systems for mobile robot in an indoor environment," 2018 International Conference on Intelligent Systems (IS), Funchal - Madeira, Portugal, 2018, pp. 400-407, doi: 10.1109/IS.2018.8710464.
[21] R. Yagfarov, M. Ivanou and I. Afanasyev, "Map comparison of Lidar-based 2D SLAM algorithms using precise ground truth," 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 2018, pp. 1979-1983, doi: 10.1109/ICARCV.2018.8581131.
[22] J. Casper and R. R. Murphy, "Human-robot interactions during the robot-assisted urban search and rescue response at the World Trade Center," in IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 33, no. 3, pp. 367-385, June 2003, doi: 10.1109/TSMCB.2003.811794.
[23] R. Mahony, T. Hamel and J. Pflimlin, "Nonlinear complementary filters on the special orthogonal group," in IEEE Transactions on Automatic Control, vol. 53, no. 5, pp. 1203-1218, June 2008, doi: 10.1109/TAC.2008.923738.
[24] S. O. H. Madgwick, A. J. L. Harrison and R. Vaidyanathan, "Estimation of IMU and MARG orientation using a gradient descent algorithm," 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, 2011, pp. 1-7, doi: 10.1109/ICORR.2011.5975346.
[25] S Ludwig, S.; Burnham, K.; Jiménez, A.; Touma, P. (2018). Comparison of attitude and heading reference systems using foot mounted MIMU sensor data: basic Madgwick and Mahony, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018, pp. 10598, 2018.
[26] HongshiTan, RTIMULib2, https://github.com/HongshiTan/RTIMULib2, posted 21 Dec 2017, last retrieve Jul 2020
[27] 劉子維, 使用麥克風陣列設計與實作聲音來源定位機制, 工程科學研究所, 國立成功大學, 2019
[28] Cesium.org, Sandcastle, https://sandcastle.cesium.com, last retrieve Jul 2020
[29] 成功大學數碼城市實驗室,成功大學NCKU立體模型, available from http://140.116.80.214/app/, last retrieve Jul 2020
[30] I. Dotlic, A. Connell, H. Ma, J. Clancy and M. McLaughlin, "Angle of arrival estimation using decawave DW1000 integrated circuits," 2017 14th Workshop on Positioning, Navigation and Communications (WPNC), Bremen, 2017, pp. 1-6, doi: 10.1109/WPNC.2017.8250079.
[31] T. Yata, L. Kleeman and S. Yuta, "Wall following using angle information measured by a single ultrasonic transducer," Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), Leuven, Belgium, 1998, pp. 1590-1596 vol.2, doi: 10.1109/ROBOT.1998.677372.
[32] K. Uno and K. Kashiyama, "Development of simulation system for the disaster evacuation based on multi-agent model using GIS," in Tsinghua Science and Technology, vol. 13, no. S1, pp. 348-353, Oct. 2008, doi: 10.1016/S1007-0214(08)70173-1.
[33] L. B. L. Santos, T. Carvalho, L. O. Anderson, C. M. Rudorff, V. Marchezini, L. R. Londe, S.M. Saito, "An RS-GIS-based comprehensive impact assessment of floods—a case study in Madeira River, Western Brazilian Amazon," in IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 9, pp. 1614-1617, Sept. 2017, doi: 10.1109/LGRS.2017.2726524.
[34] A. M. J. Sadik, M. A. Dhali, H. M. A. B. Farid, T. U. Rashid and A. Syeed, "A comprehensive and comparative study of maze-solving techniques by implementing graph theory," 2010 International Conference on Artificial Intelligence and Computational Intelligence, Sanya, 2010, pp. 52-56, doi: 10.1109/AICI.2010.18.
[35] L. Li and L. Schulze, “Comparison and evaluation of SLAM algorithms for AGV navigation,” in Production Engineering and Management, Lemgo, Germany, 2018, pp. 213-223.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-06-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-06-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw