進階搜尋


 
系統識別號 U0026-1008201818002000
論文名稱(中文) 結合高頻GPS及強震資料探討2016年美濃地震之近斷層強地動反應特性
論文名稱(英文) Integrating high-rate GPS and strong motion data to investigate the near-fault strong motion characteristics of the 2016 Meinong, Taiwan, earthquake
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 106
學期 2
出版年 107
研究生(中文) 何丞穎
研究生(英文) Cheng-Ying Ho
學號 L46054097
學位類別 碩士
語文別 中文
論文頁數 128頁
口試委員 指導教授-饒瑞鈞
共同指導教授-郭俊翔
共同指導教授-林哲民
口試委員-黃瑞德
口試委員-李恩瑞
中文關鍵字 2016美濃地震  高頻GPS  近斷層  速度脈衝特性 
英文關鍵字 2016 Meinong earthquake  near-fault  velocity pulse  pulse characteristics 
學科別分類
中文摘要 2016年2月6日,台灣西南部發生了震矩規模(Mw)6.5的中規模、但劇災型地震。此地震震央在高雄市美濃區,卻對距離震央約30公里遠的台南市造成嚴重災損,數百棟的房屋損毀及土壤液化等災害,導致117人罹難,是繼1999年集集地震後罹難人數最多的地震災害事件。美濃地震在近斷層處觀測到的最大加速度值(PGA)值約為445 gal,最大速度值(PGV)約為96 cm/s,其中主要的建物災損分布在PGA大於200 gal及PGV大於30 cm/s 之區域,而GPS水平位移場在台南以弧狀呈現,垂直位移場在龍船斷層北端在地震發生後瞬間抬升了8.4公分。由PGV空間分布分析得知,在震央方位角270度至15度的區域內觀測到強烈的震源破裂方向性效應,長周期及高速度峰值的脈衝狀地動為近斷層地震獨特的特徵。巨大的脈衝狀地動主要歸因為此次地震顯著的破裂方向性效應,使台南市受到嚴重的破壞。
密集的GPS觀測網路有助於檢測地震波傳播的顯著變化,這可能與破裂動力學或其他隱藏的地質異質性有關(Genrich and Bock, 2006); Avallone et al. (2011)表明,在近場中高採樣率的GPS可以視為強震站使用; Burks and Baker (2016)結合了高頻GPS及強震站提出了近斷層永久位移預測的模型。此次美濃地震我們在近斷層處不僅擁有完整的永久位移紀錄,更可將高頻GPS視為強震站進行強地動分析。我們利用Shahi and Baker (2014)提出的小波分析方法找出具有速度脈衝訊號(Velocity pulse)的地震記錄,結果顯示有26個自由場強震站、3個高頻GPS 50-Hz及8個GPS 1-Hz個測站在近斷層處被判定有速度脈衝訊號,這些測站依據最大速度脈衝方向大致可以分類成三群(1)新化斷層與左鎮斷層之間以北,脈衝方向為南北方向;(2)新化斷層以南,龍船斷層以北最大方向指向東南;(3)台南舊市區、歸仁及仁德則為東西向。第一群及第二群由龍船斷層至新化斷層以北,PGV由96 cm/s至49 cm/s遞減,此區週期介於1.4至2.6秒 ; 第三群鄰近後甲里斷層,受到場址效應影響,PGV皆介於30至40 cm/s,週期由東至西,從1.1秒至3.2秒,且安平一帶擁有最長周期。
台灣西南部複雜的褶皺逆衝帶及疊瓦構造,因近斷層速度脈衝影響,在地震發生瞬間擠壓了古亭坑層的泥岩,造成龍船斷層北端隆起。除此之外,綜合近斷層效應及場址效應的強地動特性導致了台南地區百餘棟的建物受損以不同類型呈現。建築物的倒塌,除了與建築物結構弱面有關,地震當下的最大速度脈衝方向也是原因之一,最大脈衝方向也與完全倒塌的7棟建築物方向一致;而鬆軟土層的場址放大效應也造成舊台南市區及安平一帶的長脈衝周期及土壤液化引致的建物災害。
美濃地震中由於斷層區域強震站分布不均,此處高頻GPS扮演重要的角色,結合高頻GPS與自由場強震站不僅能夠在近斷層監測中提供更多速度脈衝記錄,同時也能得知地震發生當下更細部的同震位移。未來,結合兩種資料之近斷層綜合性監測評估,能進一步回饋於近斷層建築物耐震設計中,作為未來建築物耐震設計規範之參考。
英文摘要 HR-GPS sites in near field can be as useful as strong motion stations for earthquake source studies, so this study combines high-rate GPS and strong motions with significant pulse-like velocity ground motions near the fault in the 2016 Meinong earthquake. First, we find out how much the sampling rate of GPS will be needed to record real ground motion, and then use an approach of wavelet analysis proposed by Shahi and Baker (2014) to identify pulse-like motions, and finally velocity pulses of 26 strong motion stations, 3 high-rate GPS stations, and 11 GPS stations were detected.
Through the method of wavelet analysis, the results are divided into three groups. According to the orientation of strongest pulse, which showed different characteristics. The group-one and two are located in the north and south of the Hsinhua Fault and northwest of the epicenter, the PGVs of the pulses decrease with distance from south to north (96 cm/s - 49 cm/s) with a period band of 1.4-2.6 seconds. The third group with mainly east-west pulses occurs near the N-S-trending reverse, Houjiali fault which is west to the epicenter. The pulse periods vary between 1.1 and 3.2 seconds with similar PGVs in this area.
The pulse period between 1-2 sec will damage 10-20 floors buildings. Furthermore, although there were no serious damages in any high rise buildings with a period of 2 seconds or more, it brought numerous liquefaction-damages on low-rise building with a period of 1.1-1.6 seconds. In addition to strong pulses, the site conditions are needed to be considered, those damages are mostly located at sites with Vs30 varying between 180 m/s and 300 m/s. Finally, we compared the strong motion data recorded by the 2016 Meinong earthquake with the data of the 2018 Mw 6.2 Hualian earthquake. The result shows the pulse characteristics related the rupture behavior of fault, orientation of the strongest pulse and the site conditions. The pulse characteristics of the fault ruptured to the surface in the Hualien earthquake are obviously different from the blind fault in the Meinong event. Combing HR-GPS and strong motion data, an effective analysis of the pulse characteristics in near-fault region can provide a more accurate ground motion prediction for the high seismic potential area.
論文目次 摘要 I
Extended Abstract III
誌謝 VI
目錄 VII
表目錄 IX
圖目錄 X
1.1、研究背景與目的 1
1.2、前人研究 3
1.3、論文架構 6
第二章 美濃地震背景概述 7
2.1、台灣地質概況 7
2.1.1、研究地區區域地質概況 9
2.1.2、研究地區斷層分布 11
2.2、美濃地震近斷層強地動特性 18
2.2.1、脈衝狀訊號(Pulse-like) 23
2.2.2、強地動預估式 25
2.2.3、距離衰減因子 28
2.2.4、殘差分析 30
2.2.5、顯著的同震位移 36
第三章 近斷層地震資料處理流程 41
3.1、GPS 資料處理方法 41
3.1.1、混疊效應(Aliasing Effect) 41
3.2、小波分析理論 43
3.3、近斷層地震篩選依據 45
第四章 研究成果與討論 52
4.1、高頻GPS 在強地動分析中使用的極限 52
4.2、美濃地震近斷層速度脈衝特性 59
4.3、最大脈衝方向與災損類型 65
4.4、台灣西南部淺層速度構造與災損分佈 68
4.5、最大脈衝方向與同震位移 75
4.6、震後第一時間資源分配評估 78
4.7、顯著Fling Step 事件 81
第五章 結論 94
參考文獻 96
附錄A 105
附錄B 108
附錄C 123
參考文獻 中文部分:
內政部營建署,建築物耐震設計規範及解說(2011),共149頁。
中國石油公司台灣油礦探勘總處(1989)臺南地質圖(1:100,000),中國石油公司出版。
經濟部中央地質調查所(2016),20160206地震地質調查報告,共103頁。
國家災害防救科技中心與國家地震工程研究中心(2016),0206地震災情彙整與實地調查報告,共75頁。
科技部(2016),2016年高雄美濃地震-震後科學調查,共186頁。
財團法人中興顧問社(2012)。“核電廠地質調查與地震危害度參數委託研究”, 行政院原子能委員會核能研究所,反應譜衰減率建置期末報告。
郭俊翔、溫國樑、謝宏灝、林哲民、張道明(2011),近地表剪力波速性質之研究, 國家地震工程研究中心,報告編號 NCREE-11-022。
郭俊翔、林哲民、章順強、溫國梁、謝宏灝(2017),台灣強震測站場址資料庫,國家地震工程研究中心,報告編號 NCREE-2017-004。
何春蓀(1986),台灣地質概論,經濟部中央地質調查所,共164頁。
孫習之(1964),台灣省臺南至高雄間平原區域航照地質之研究。台灣省臺南至高雄間平原區域航照地質研究,台灣石油地質,第3號,第39-52頁。
林啟文,張徽正,陳勉銘,盧詩丁,石同生,黃文正(2000),活動斷層概論,五十萬分之一台灣活動斷層分布圖說明,第二版,經濟部中央地質調查所特刊,第13號,共122頁。
余輝龍、施輝煌、黃春盛、何智剛、曾寶樹(1990),台南縣龍船及高雄縣坑內、小滾水構造重點地質核查報告,中油內部報告。
林朝棨(1963),台灣之第四紀,台灣文獻,14(1),第1–53頁。
林啟文、陳文山、饒瑞鈞(2007),台灣活動斷層調查的近期發展,經濟部中央地質調查所特刊第十八號,第85–110頁。
鄭世楠、江嘉豪、陳燕玲(2012),台灣地區歷史地震資料的建置,中央氣象局地震技術報告彙編,第60卷,第427-448頁。
鳥居敬造(1933),高雄州旗山油田調查報告及旗山油田地質圖(三萬分之一),台灣總督府殖產局,第633號,共36頁。
徐慶雲(1975),台南縣坑內、龍船及高雄小滾水構造地質核查報告,中油台南縣坑內、龍船及高雄小滾水構造地質核查報告,中油內部報告。
吉田要(1932),高雄州旗山南西部油田調查報告及旗山南西部油田地質圖。(三萬分之一),台灣總督府殖產局,第610號,第1-37頁。
耿文溥(1967),台灣南部甲仙及旗山間之地質,台灣省地質調查所彙刊,第19號,第1-13頁。
孫習之(1964),臺灣省臺南至高雄間平原區域航照地質研究,臺灣石油地質,第3號,39-52頁。
張麗旭、周敏、陳培源(1947),民國35年12月5日台南之地震,「台灣省地質調查所彙刊」,第1號,11-18頁。

英文部分:
Abrahamson, N. A., and Shedlock, K. M. (1997). Overview. Seismological Research Letters, 68(1), 9–23, doi:10.1785/gssrl.68.1.9.
Abrahamson, N., and W. Silva (2008). Summary of the Abrahamson & Silva NGA ground-motion relations, Earthquake Spectra 24, 67–97, doi:10.1193/1.2924360.
Anderson, J. G., and Quaas, R. (1988). The Mexico Earthquake of September 19, 1985—Effect of Magnitude on the Character of Strong Ground Motion: An Example from the Guerrero, Mexico Strong Motion Network. Earthquake Spectra, 4(3), 635–646, doi:10.1193/1.1585494.
Angelier, J., Barrier, E., and Chu, H. T.(1986). Plate collision and paleostress trajectories in a fold-thrust belt: The foothills of Taiwan. Tectonophysics, 125(1), 161–178. doi:10.1016/0040-1951(86)90012-0.
Attalla, M. R., Paret, T. F., and Freeman, S. A. (1998). Near-source behavior of buildings under pulse-type earthquakes. In Proceedings of the sixth US National Conference on Earthquake Engineering (p. 270).
Avallone, A., Marzario, M., Cirella, A., Piatanesi, A., Rovelli, A., Di Alessandro, C., et al. (2011). Very high rate (10 Hz) GPS seismology for moderate-magnitude earthquakes: The case of the Mw 6.3 L’Aquila (central Italy) event. Journal of Geophysical Research: Solid Earth, 116, B02305.doi: 10.1029/2010JB007834.
Baker, J. W.(2007). Quantitative Classification of Near-Fault Ground Motions Using Wavelet Analysis. Bulletin of the Seismological Society of America, 97(5), 1486–1501. doi: 10.1785/0120060255.
Borcherdt, R. D. (1994). Estimates of Site-Dependent Response Spectra for Design (Methodology and Justification). Earthquake Spectra, 10(4), 617–653. doi:10.1193/1.1585791.
Boore, D. M. (2008). TSPP—A collection of FORTRAN programs for processing and manipulating time series, U.S. Geological Survey open-file report 2008-1111.
Boore, D. M., and G. M. Atkinson (2008). Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s, Earthquake Spectra 24, 99–138.
BSSC Program on Improved Seismic Safety Provisions, and United States. Federal Emergency Management Agency. (1997). NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures: Provisions (Vol. 302). FEMA, doi:10.1193/1.1586085.
Burks, L. S., and Baker, J. W. (2016). A predictive model for fling-step in near-fault ground motions based on recordings and simulations. Soil Dynamics and Earthquake Engineering, 80, 119–126, doi:10.1016/j.soildyn.2015.10.010
Campbell, K. W., and Y. Bozorgnia (2008). NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s, Earthquake Spectra 24, 139–171, doi:10.1193/1.2857546.
Chai, B. H. (1972). Structure and tectonic evolution of Taiwan. Am. J. Sci, 272(5), 389–422. 141, doi:10.2475/ajs.272.5.389.
Chen, Y. C., Yu, M. L., Rogan, W. J., Gladen, B. C., and Hsu, C.-C. (1994). A 6-year follow-up of behavior and activity disorders in the Taiwan Yu-cheng children. American Journal of Public Health, 84(3), 415–421, doi:10.2105/AJPH.84.3.4.15.
Chen, S. C., Hsu, S. K., Tsai, C. H., Ku, C. Y., Yeh, Y. C., and Wang, Y. (2010). Gas seepage, pockmarks and mud volcanoes in the near shore of SW Taiwan. Marine Geophysical Researches, 31(1-2), 133-147. https://doi.org/10.1007/s11001-010-9097-6, doi:10.1007/s11001-010-9097-6.
Ching, K.-E., Rau, R.-J., Johnson, K. M., Lee, J.-C., and Hu, J.-C.(2011). Present-day kinematics of active mountain building in Taiwan from GPS observations during 1995–2005. Journal of Geophysical Research: Solid Earth, 116, B09405, doi:10.1029/2010JB008058.
Chiou, B. S.-J., and R. R. Youngs (2008). An NGA model for the average horizontal component of peak ground motion and response spectra, Earthquake Spectra 24, 173–215, doi:10.1193/072813EQS219M.
Cork, T. G., Kim, J. H., Mavroeidis, G. P., Kim, J. K., Halldorsson, B., and Papageorgiou, A. S. (2016). Effects of tectonic regime and soil conditions on the pulse period of near-fault ground motions. Soil Dynamics and Earthquake Engineering, 80, 102–118, doi:10.1016/j.soildyn.2015.09.011.
Desai, S. D., Bertiger, W., and Haines, B. J. (2014). Self-consistent treatment of tidal variations in the geocenter for precise orbit determination. Journal of Geodesy, 88(8), 735–747, doi:10.1007/s00190-014-0718-8.
Fayjaloun, R., Causse, M., Voisin, C., Cornou, C., and Cotton, F. (2017). Spatial Variability of the Directivity Pulse Periods Observed during an EarthquakeSpatial Variability of the Directivity Pulse Periods Observed during an Earthquake. Bulletin of the Seismological Society of America, 107(1), 308–318, doi:10.1785/0120160199.
Genrich, J. F., and Bock, Y. (2006). Instantaneous geodetic positioning with 10–50 Hz GPS measurements: Noise characteristics and implications for monitoring networks. Journal of Geophysical Research: Solid Earth, 111, B03403, doi:10.1029/2005JB003617.
Hall, J. F., Heaton, T. H., Halling, M. W., & Wald, D. J. (1995). Near-source ground motion and its effects on flexible buildings. Earthquake Spectra, 11(4), 569–605, doi:10.1193/1.1585828.
Hancock, J., Watson-Lamprey, J., Abrahamson, N. A., Bommer, J. J., Markatis, A., McCOY, E., and Mendis, R. (2006). An improved method of matching response spectra of recorded earthquake ground motion using wavelets. Journal of Earthquake Engineering, 10(spec01), 67–89, doi:10.1080/13632460609350629.
Housner, G. W., and Hudson, D. E. (1958). The Port Hueneme earthquake of March 18, 1957. Bulletin of the Seismological Society of America, 48(2), 163–168.
Idriss, I. M. (2008). An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes, Earthquake Spectra 24, 217–242, doi:10.1193/1.2924362.
Iwan, W. D., Moser, M. A., and Peng, C.-Y. (1985). Some observations on strong-motion earthquake measurement using a digital accelerograph. Bulletin of the Seismological Society of America, 75(5), 1225–1246.
Kalkan, E., and Kunnath, S. K. (2006). Effects of Fling Step and Forward Directivity on Seismic Response of Buildings. Earthquake Spectra, 22(2), 367–390, doi:10.1193/1.2192560.
Kanamori, H., Ye, L., Huang, B.-S., Huang, H.-H., Lee, S.-J., Liang, W.-T., et al. (2017). A strong-motion hot spot of the 2016 Meinong, Taiwan, earthquake (M_w= 6.4). Terrestrial Atmospheric and Oceanic Sciences, 28(5), 637–650, doi:10.3319/TAO.2016.10.07.01.
Kuo, C.-H., Wen, K.-L., Hsieh, H.-H., Chang, T.-M., Lin, C.-M., and Chen, C.-T. (2011). Evaluating empirical regression equations for Vs and estimating Vs30 in northeastern Taiwan. Soil Dynamics and Earthquake Engineering, 31(3), 431–439, doi:10.1016/j.soildyn.2010.09.012.
Kuo, C.-H., Wen, K.-L., Hsieh, H.-H., Lin, C.-M., Chang, T.-M., and Kuo, K.-W. (2012). Site classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT. Engineering Geology, 129, 68–75. doi:10.1016/j.enggeo.2012.01.013
Lee, C. T., and Tsai, B. R. (2008). Mapping Vs30 in Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 19(6), doi:10.3319/TAO.2008.19.6.671.
Lee, S. J., Yeh, T. Y., & Lin, Y. Y. (2016). Anomalously large ground motion in the 2016 ML 6.6 Meinong, Taiwan, earthquake: A synergy effect of source rupture and site amplification. Seismological Research Letters, 87(6), 1319-1326, doi:10.1785/0220160082.
Liew, P. M., Pirazzoli, P. A., Hsieh, M. L., Arnold, M., Barusseau, J. P., Fontugne, M., and Giresse, P. (1993). Holocene tectonic uplift deduced from elevated shorelines, eastern Coastal Range of Taiwan. Tectonophysics, 222(1), 55–68, doi:10.1016/0040-1951(93)90189-Q.
Luco, N., and Cornell, C. A. (2007). Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions. Earthquake Spectra, 23(2), 357–392, doi:10.1193/1.2723158.
Lundberg, N., Reed, D.L., Liu, C.S. and Lieske, J. (1997) Forearc-basin closure and arc accretion in the submarine suture zone south of Taiwan, Tectonophysics, 274, 5-23, doi:10.1016/S0040-1951(96)00295-8.
Lyons, R. G. (2001). Understanding Digital Signal Processing's Frequency Domain. RF Design Magazine.
Mavroeidis, G. P., and Papageorgiou, A. S. (2003). A mathematical representation of near-fault ground motions. Bulletin of the Seismological Society of America, 93(3), 1099–1131, doi:10.1785/0120020100.
Michel, C., Kelevitz, K., Houlié, N., Edwards, B., Psimoulis, P., Su, Z., ... and Giardini, D.(2017). The Potential of High-Rate GPS for Strong Ground Motion Assessment. Bulletin of the Seismological Society of America, 107(4), doi:10.1785/0120160296.
Seed, H. B., Ugas, C., and Lysmer, J. (1976). Site-dependent spectra for earthquake-resistant design. Bulletin of the Seismological Society of America, 66(1), 221–243.
Seno, T., Stein, S., and Gripp, A. E. (1993). A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data. Journal of Geophysical Research: Solid Earth, 98(B10), 17941–17948, doi:10.1029/93JB00782.
Shahi, S. K., and Baker, J. W. (2011a). An empirically calibrated framework for including the effects of near-fault directivity in probabilistic seismic hazard analysis. Bulletin of the Seismological Society of America, 101(2), 742–755, doi:10.1785/0120100090.
Shahi, S. K., and Baker, J. W. (2011b). Regression models for predicting the probability of near-fault earthquake ground motion pulses, and their period. Applications of Statistics and Probability in Civil Engineering, 30(4), 459.
Shahi, S. K., and Baker, J. W. (2014). An efficient algorithm to identify strong-velocity pulses in multicomponent ground motions. Bulletin of the Seismological Society of America, 104(5), 2456–2466, doi:10.1785/0120130191.
Somerville, Smith, N. F., Graves, R. W., and Abrahamson, N. A. (1997). Modification of Empirical Strong Ground Motion Attenuation Relations to Include the Amplitude and Duration Effects of Rupture Directivity. Seismological Research Letters, 68(1), 199–222, doi:10.1785/gssrl.68.1.199.
Somerville, P. G. (1998, September). Development of an improved representation of near fault ground motions. In SMIP98 Seminar on Utilization of Strong-Motion Data (Vol. 15), doi:10.1785/gssrl.68.1.199.
Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1–4), 57–76, doi:10.1016/0040-1951(90)90188-E.
Teng, L. S. (1996). Extensional collapse of the northern Taiwan mountain belt. Geology, 24(10), 949–952, doi:10.1130/0091-7613(1996)024<0949:ECOTNT>2.3.CO;2.
Tsai, P.-C., Rau, R.-J., & Ching, K.-E. (2018). Coseismic and postseismic deformation of the 2016 Mw 6.5 Meinong, Taiwan, earthquake (pp. EGU2018-6306). Presented at the EGU General Assembly Conference Abstracts.
Walker, James S. (2008). “A Primer on Wavelets and Their Scientific Applications.” In CERN Document Server, 2nd ed., 319, doi:10.1201/9781584887461.ch6.
Wang, S. (1976). ERTS-1 satellite imagery and its application in regional geologic study of southwestern Taiwan: Petrol. Geol. Taiwan, no.13, 37-57.
Wang, K. L., Chung, S.-L., Chen, C.-H., Shinjo, R., Yang, T. F., and Chen, C.-H. (1999). Post-collisional magmatism around northern Taiwan and its relation with opening of the Okinawa Trough. Tectonophysics, 308(3), 363–376, doi:10.1016/S0040-1951(99)00111-0.
Wang, R., Schurr, B., Milkereit, C., Shao, Z., and Jin, M. (2011). An Improved Automatic Scheme for Empirical Baseline Correction of Digital Strong-Motion Records. Bulletin of the Seismological Society of America, 101(5), 2029–2044, doi:10.1785/0120110039.
Wu, F. T. (1978). Recent tectonics of Taiwan. Journal of Physics of the Earth, 26(Supplement), S265–S299, doi:10.4294/jpe1952.26.Supplement_S265.
Yen, Y. T., and Ma, K. F. (2011). Source-scaling relationship for M 4.6–8.9 earthquakes, specifically for earthquakes in the collision zone of Taiwan. Bulletin of the Seismological Society of America, 101(2), 464-481, doi:10.1785/0120100046.
Yu, S.-B., Chen, H.-Y., and Kuo, L.-C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1), 41–59, doi:10.1016/S0040-1951(96)00297-1.
Yu, S. B., Y. J. Hsu, L. C. Kuo, H. Y. Chen, and C. C. Liu, (2003). GPS measurement of postseismic deformation following the 1999 Chi-Chi, Taiwan, earthquake. Journal of Geophysical Research, 108(B11), 2520, doi:10.1029/2003JB002396.
Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., and Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3), 5005–5017, doi:10.1029/96JB03860.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-07-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw