進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1008201514400700
論文名稱(中文) 非接觸式漫反射光譜系統之研發
論文名稱(英文) Development of a noncontact diffuse optical spectroscopy system
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 103
學期 2
出版年 104
研究生(中文) 洪誠鴻
研究生(英文) Cheng-Hung Hung
電子信箱 L76024098@mail.ncku.edu.tw
學號 L76024098
學位類別 碩士
語文別 中文
論文頁數 46頁
口試委員 指導教授-曾盛豪
口試委員-黃玲惠
口試委員-陳顯禎
口試委員-楊朝鈞
口試委員-詹明哲
中文關鍵字 非接觸  漫反射光譜  吸收係數  散射係數 
英文關鍵字 Diffuse reflectance spectroscopy  Absorption Coefficient  Reduced Scattering Coefficient 
學科別分類
中文摘要 在這篇論文中提出了一種掃描式非接觸量測系統,此系統使用波長範圍500- 1700nm寬頻超連續白光雷射,配合微機電反射鏡(MEMS Mirror)及變焦透鏡(Tunable lens)達到掃描式量測的目的,並利用漫反射光譜法和光傳播模型算出組織的吸收係數與散射係數。而理論模型部分不是使用一般的擴散方程式,因為擴散理論有一些假設,在近距離量測時無法提供準確的運算,本論文中利用蒙地卡羅法建立資料庫配合人工類神經網路模型,可以精確的模擬光在組織中傳播情形且不受限制。這裡的蒙地卡羅法也利用圖形化處理器進行加速,解決了蒙地卡羅演算時間過長的問題,大幅縮短其運算速度。本論文中製作模擬皮膚吸收散射係數的固態假體進行量測,實驗中不但證明了非接觸式系統可精確量測到吸收散射數值,並且也能針對一定的面積做掃描式量測,可分辨出假體在不同位置吸收散射的變化。而加入微機電反射鏡可加速掃描的時間,再配合變焦透鏡可自由改變焦距,使量測時不會受距離變化而影響,因此系統相對於傳統非接觸式的量測會更快速也更穩定。
英文摘要 In this study, we proposed a non-contact scanning measurement system. This system uses a broadband supercontinuum white light laser, which output spectrum covers the entire 450-2400 nm region. It projected a collimated light beam onto MEMS mirror and tunable lens for scanning measurement. We utilized the spectral analysis to determine the broadband absorption and scattering spectra of turbid samples. We combined the Monte Carlo method and graphics processing units to establish the reflectance database with high speed. We further utilize optical properties and diffuse reflectance spectra to train Artificial Neural Network. We demonstrate the Ann model can be used to determine the optical properties of phantom.
Finally, we can utilize this novel model accurately and immediately simulate every conditions of photon migrating in the tissue without any limitation. So the system compared to conventional non-contact measurement would be faster and more accurate.
論文目次 摘要 I
誌謝 IV
目錄 V
表目錄 VII
圖目錄 VIII
符號列表 XI
第一章 緒論 1
第二章 理論背景 6
2.1 蒙地卡羅法 6
2.2 GPU-蒙地卡羅法 10
2.3 人工類神經網路 13
第三章 材料與方法 17
3.1假體製作 17
3.2 積分球系統 19
3.3新型非接觸式實驗架構 21
3.4掃描式非接觸系統架構 23
第四章 結果與討論 26
4.1 傳統非接觸式量測效率與準確性 26
4.2 ZEMAX模擬結果與實際比較 29
4.2.1 ZEMAX模擬結果 29
4.2.2 與實際量測結果之比較 33
4.2 新型非接觸式量測結果 35
4.4掃描式非接觸系統的量測結果 37
第五章 結論與未來工作 41
5.1結論 41
5.2未來工作 42
參考文獻 44
參考文獻 [1] A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J.Biomed. Opt. 11(4), 044005 (2006).
[2] E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infraredlight,” J. Biomed. Opt. 10(1), 011008 (2005).
[3] N. Kollias, A. Baqer, and I. Sadiq, “Minimum erythema dose determination in individuals of skin type V and VI with diffuse reflectance spectroscopy,” Photodermatol. Photoimmunol. Photomed. 10(6), 249–254 (1994).
[4] S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077005 (2012).
[5] Zonios, G., J. Bykowski, and N. Kollias, Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J Invest Dermatol, 2001. 117(6): p. 1452-7.
[6] I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, and M.
S. Feld, "Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo," Am. J.Obstet. Gynecol. 186, 374-382 (2002).
[7] J. A. Freeberg, D. M. Serachitopol, N. McKinnon, R. Price, E. N. Atkinson, D. D. Cox, C. MacAulay, R.Richards-Kortum, M. Follen, and B. Pikkula, "Fluorescence and reflectance device variability throughout the progression of a phase II clinical trial to detect and screen for cervical neoplasia using a fiber optic probe," J.Biomed. Opt. 12, 034015 (2007).
[8] S. K. Chang, Y. N. Mirabal, E. N. Atkinson, D. Cox, A. Malpica, M. Follen, and R. Richards-Kortum,"Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer," J.Biomed. Opt. 10, 024031 (2005).
[9] Durduran, T., et al., Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation. Opt Lett, 2004. 29(15): p. 1766-8.
[10] Zhou, C., et al., Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury. J Biomed Opt, 2009. 14(3): p. 034015.
[11] Cugmas, B., et al., Pressure-induced near infrared spectra response as a valuable source of information for soft tissue classification. J Biomed Opt, 2013. 18(4): p. 047002.
[12] Carp, S.A., et al., Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements. J Biomed Opt, 2006. 11(6): p. 064016.
[13] Ting Li, Yu Lin, Yu Shang, Lian He, Chong Huang, Margaret Szabunio2 & Guoqiang Yu, “Simultaneous measurement of deep tissue blood flow and oxygenation using noncontact diffuse correlation spectroscopy flow-oximeter.’’ SCIENTIFIC REPORTS, 3 : 1358 | DOI: 10.1038,February (2013).
[14] Andree, S., et al., Evaluation of a novel noncontact spectrally and spatially resolved reflectance setup with continuously variable source-detector separation using silicone phantoms. J Biomed Opt, 2010. 15(6): p. 067009.
[15] Bish, S.F., et al., Development of a noncontact diffuse optical spectroscopy probe for measuring tissue optical properties. J Biomed Opt, 2011. 16(12): p. 120505.
[16] Chung-Chieh Yu, Condon Lau, Geoff O’Donoghue, Jelena Mirkovi, Sasha McGee, Luis Galindo, Alphi Elackattu, Elizabeth Stier, Gregory Grillone,Kamran Badizadegan, Ramachandra R. Dasari,Michael S. Feld, OPTICS EXPRESS,Vol. 16, No. 20,(2008)
[17] L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,’’ Computer Methods and Programs in Biomedicine 47, 131-146 (1995).
[18] Alerstam, E., T. Svensson, and S. Andersson-Engels, Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration. Journal of Biomedical Optics, 2008. 13(6): p. 060504-060504-3.
[19]M. Testorf, U. Österberg, B. Pogue, and K. Paulsen, “Sampling of Time- and Frequency-Domain Signals in Monte Carlo Simulations of Photon Migration,’’ Appl. Opt. 38, 236-245 (1999).
[20] I. V. Yaroslavsky, A. N. Yaroslavsky, V. V. Tuchin, and H. J. Schwarzmaier, “Effect of the scattering delay on time-dependent photon migration in turbid media,’’ Appl Opt 36, 6529-6538 (1997).
[21] Erik Alerstam, William Chun Yip Lo, Tianyi David Han, Jonathan Rose, Stefan Andersson-Engels, and Lothar Lilge, “Next-generation acceleration and code optimization for light transport in turbid media using GPUs,’’ J. Biomed. Opt. 15, 035002 (2010).
[22]"Silicone Phantom Instruction",(University of California Irvine. Network for Transtional Research Optical Imagine) http://www.bli.uci.edu/ntroi/pubs/si_recipe.pdf.
[23] Scott Prahl, “Everything I think you should know about Inverse Adding-Doubling’’, chapter 4.2 (2011).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw