進階搜尋


下載電子全文  
系統識別號 U0026-1008201223595600
論文名稱(中文) 探討不同價態之鎢與不同囊包材質影響橄欖石-金屬鐵之高溫高壓產物相產物關係
論文名稱(英文) Investigating the effects of valance states and capsule materials on phase relation of olivine-metallic iron under high pressure and temperature
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 100
學期 2
出版年 101
研究生(中文) 花柏榕
研究生(英文) Po-Jung Hua
學號 l46994051
學位類別 碩士
語文別 中文
論文頁數 120頁
口試委員 指導教授-龔慧貞
口試委員-劉德慶
口試委員-李德春
中文關鍵字 分異係數  高溫高壓  天體分化  親鐵元素  氧分壓  氧化還原環境 
英文關鍵字 partition coefficient  high temperature-high pressure  planetary segregation  siderophile element  oxygen fugacity  redox condition 
學科別分類
中文摘要 本研究以實驗學方法模擬石鐵質隕石母天體內部之溫度壓力條件下(1200 oC、3GPa),不同氧化態之W(0 價與+6 價)於矽酸鹽地函之主要礦物-橄欖石或固相金屬鐵間的反應。橄欖石+金屬鐵反應顯示本研究所有實驗之氧化還原環境應接近鐵-氧化鐵緩衝劑,並由鐵鎂氧化物的產出暗示空隙氧將參與氧分壓平衡之反應。三成分實驗顯示系統產物與化學特徵受鎢的起始價態與樣品囊包選擇影響。鉑囊包易與系統鐵反應形成合金使系統較氧化(ΔIW-0.3 至-0.4),鐵囊包造成金屬鐵濃度上升,若搭配金屬鎢為起始原料則系統較還原(ΔIW-0.5 至-0.6),若搭配三氧化鎢為起始原料則氧化還原環境隨時間改變,時間由短至長環境逐漸還原。無論使用何種囊包,環境較氧化時鎢同時以金屬態與氧化態存在,環境較還原時鎢以金屬態存在。
多數實驗產物包含橄欖石+鐵鎢合金+鐵鎂氧化物;若環境較氧化(ΔIW-0.3 至-0.4)則出現一未曾報導之含鎢未知相,此未知相可能是一玻璃相,其中鎢的價態可能為正6 價。鎢於金屬與氧化物間之分異行為隨實驗時間增長而上升,可能由於系統中鎢含量(<5 mole%)遠小於鐵含量(>70 mole%),鎢的氧化還原反應對氧分壓之影響遠小於鐵-氧化鐵緩衝劑,顯示僅以鐵-氧化鐵系統之計算氧分壓討論時,無法明確說明氧分壓微小變化如何影響鎢的分異行為。
化學定量分析結果顯示,鎢於金屬鐵與橄欖石間之分異係數約為 39±5,此數值
仍落於前人研究針對熔融系統實驗之數值範圍內,顯示僅以鎢於熔融系統之分異係數可能不足以完整說明天體中元素分異行為之成因,因為在冷卻結晶過程中,鎢的分異行為亦受橄欖石結晶之影響。未來若能針對各類矽酸鹽礦物與金屬間之分異行為進行更多研究,能增進使用元素分異行為探究天體分化之深度。
英文摘要 In order to study the phase relationship and composition characteristic of olivine-iron-W/WO3 system during segregation period within asteroid interior (3 GPa, 1200 oC), two series of experiments were designed; binary and ternary, with olivine, Fe, W/WO3.
The binary system was designed to understand the reaction between starting material pairs. The result of olivine-iron showed that the metallic iron will buffer the experiment condition fO2 near iron-wustite (IW) buffer. The existing of (Fe,Mg)O in the products implied the pore-oxygen may contribute to oxygen fugacity buffering. The results of olivine-WO3 showed that the WO3 will react with olivine to form orthopyroxene and wolframite. In contrast, metallic W does not react with olivine, but may be oxidized by pore oxygen to form WO3 The product of Fe-WO3 pair showed that the Fe will reduce WO3 to form W or WO2. In summary, the results of binary system suggested that the valence state of W plays a strong influence upon the reaction between starting materials.
The ternary system was designed to investigate the phase relation within olivine-iron-W/WO3 system and partition behavior of W. Two capsules, Fe and Pt, were using to test how capsule material controlled fO2 and how fO2 affect partition behavior of W. Using Pt capsule and WO3 as start material, the products contain olivine, FeW, (Fe,Mg)O, and unknown phase which maybe a WO3-bearing glass phase. Using Pt capsule and W as start material, the products contain olivine, FeW, and unknown phase. On the other hand, using Fe capsule and WO3 as start material, the products and fO2 showed varied as fraction of time. When heating duration shorter than 480 mins, the products contain olivine, FeW, (Fe,Mg)O and unknown phase/wolframite, the fO2 near -0.3~-0.4 ΔIW; When heating duration longer than 800 mins, the products only contain olivine, FeW, and (Fe,Mg)O, the fO2 near -0.5~-0.6ΔIW. When using Fe capsule and W as start material, the products only contained olivine, FeW, and (Fe,Mg)O, the fO2 near -0.5~-0.6ΔIW.
The results showed that the valence state of W and the capsule materials (i.e Pt and Fe) played strong influence upon the phase reaction and the chemical composition of the final products. When using Pt capsule, the concentration of Fe in start material decreased due to alloy-tendency of Fe and Pt, thus the calculated fO2 is higher than the Fe capsule series which Fe capsule is acted as “Fe sink”. The varies valence state of W settled original state of redox reaction between iron (Fe and FeO) and tungsten (W and WO3), thus affected the final products and fugacity buffering. Due to the variable amount of W/WO3 (<5 mole%) and Fe (>70 mole%) in the system, the redox reaction of W only has minor contribution to buffer the redox condition compared to Fe-FeO buffer pair.
The quantitative analysis shows the D(W) between metal and olivine is 39±5, the value is similar to previous studies which carried out within a melting system. It implies the crystallization of olivine may play an important role in distribution of W between iron core and silicate mantle, which the information is important to dating results in order to put constraints on the conditions of segregation; the D(W) base on melting system may not sufficient to explain the distribution of W within a cooling state of terrestrial planets. To better understand segregation of terrestrial planets, further investigation of D(W) between solid metal and other silicate minerals is desired.
論文目次 目錄
摘要. I
Abstract . II
致謝. IV
表目錄.VIII
圖目錄. IX
第一章 序論 1
1-1 分異行為之定義及其影響因子2
1-2 親鐵元素之分異行為及其應用於天體分化之研究3
1-3 鎢之分異行為.7
1-4 氧化還原環境之控制12
1-5 固相系統之重要性及其與熔融系統之差異.14
1-6 研究目的15
第二章 大體積壓力機之壓力及樣品腔內溫度梯度標定. 17
2-1 大體積壓力機簡介17
2-2 樣品腔19
2-3 壓力標定與溫度標定21
2-3-1 壓力標定21
2-3-2 溫度標定 24
2-4 產壓效能25
2-4-1 室溫壓力標定 25
2-4-2 高溫壓力標定 27
2-5 樣品區溫度分佈.30
2-6 樣品腔與實驗控制之關係.31
2-6-1 樣品腔設計對傳壓效率之影響 32
2-6-2 樣品腔設計對加溫功率之影響 33
2-6-3 不同傳壓介質於高溫時之型變行為 40
2-7 總結41
第三章 實驗方法. 42
3-1 實驗設計42
3-2 高溫高壓實驗.43
3-3 分析方法43
3-3-1 拉曼光譜 43
3-3-2 電子顯微鏡觀察組織及產物化學成分分析 44
第四章 實驗結果. 48
4-1 成分定量分析之比較標準與分析方法之選擇.48
4-1-1 產物顆粒內成份變化與比較標準 48
4-1-2 溫度梯度造成之區域成份差異 57
4-1-3 能量分散光譜儀與波長分散光譜儀分析之差異 59
4-2 雙成份系統.60
4-3 氧分壓之計算.65
4-4 三成份起始物質.67
4-4-1 不同反應時間 67
4-4-2 不同囊包材質 75
4-4-3 不同起始物質 78
4-4-4 不同壓力-鐵囊包. 79
第五章 實驗變因之影響與分異行為. 83
5-1 雙成分系統之涵義83
5-2 以雙成分系統結果探討三成分系統實驗之反應84
5-3 影響實驗產物變因之討論.92
5-3-1 鎢的起始價態與氧化還原反應關係 92
5-3-2 含鎢未知相之特徵與壓力之影響 93
5-3-3 囊包材質對氧化還原環境之控制機制 96
5-3-4 系統氧化還原反應之控制機制 100
5-4 鎢於金屬與橄欖石間之分異行為102
第六章 結論與未來研究方向. 108
6-1 研究結果總結.108
6-2 未來實驗建議.110
參考資料. 113
附錄一 二輝石溫度計計算方法. 119

表目錄
表 1-1. 鎢常見價態及不同配位數時的離子半徑.4
表 2-1 傳壓介質物理性質20
表 2-2 室溫實驗樣品腔設計尺寸與壓力標定結果26
表 2-3 高溫壓力標定實驗條件與實驗結果29
表 2-4 高溫實驗條件與實驗結果34
表 3-1. 實驗起始成分表.46
表 3-2. Fo91 橄欖石成份表47
表 4-1a. 雙成分實驗條件與實驗產物.49
表 4-1b.雙成分實驗產物之化學組成.49
表 4-2a. 三成分實驗產物與氧分壓.50
表 4-2b. 三成分實驗中橄欖石、鐵鎢合金與鐵鎂氧化物成分.51
表 4-2b. 三成分實驗中橄欖石、鐵鎢合金與鐵鎂氧化物成分(續) 52
表 4-2b. 三成分實驗中橄欖石、鐵鎢合金與鐵鎂氧化物成分(續) 53
表 4-2c. 三成分實驗中未知相、直輝石與黑鎢礦化學組成.54
表 4-3.三成分實驗不同反應時間實驗結果表.68
表 4-4.三成分實驗不同囊包材質實驗結果表.77
表 4-5.三成分實驗不同起始物質實驗結果表.80
表 4-6.三成分實驗不同壓力實驗結果表.80
表 5-1 雙成分系統中推測之反應式表.85
表 5-2 鎢於金屬與橄欖石間分異係數表103

圖目錄
圖1-1. 親鐵元素於地函中含量對球粒隕石標準化示意圖.5
圖 1-2. 以多種元素之分異係數實驗值推測天體分化時之環境圖.6
圖 1-3. Ni、Co、W、Mo 之分異係數隨壓力變化圖.9
圖 1-4. D(W)隨壓力變化圖9
圖 1-5. D(W)隨非橋鍵氧(NBO/T)數量變化圖11
圖 1-6. D(W)隨氧分壓變化圖11
圖 1-7. 以雙層囊包控制氧分壓示意圖.13
圖 1-8. 部分固態氧分壓緩衝劑平衡氧分壓隨溫度變化圖.13
圖 1-9. 液態金屬-液態矽酸鹽實驗中固相產物圖.16
圖 2-1. 多面頂砧模傳壓組示意圖.17
圖 2-2. 1000 噸大壓力機及D-DIA 模組.18
圖 2-3. 室溫壓力標定使用之樣品腔設計.22
圖 2-4. 標定物質之電阻變化與液壓機施力關係圖.22
圖 2-5. 二氧化矽與鍺酸鈣之溫壓穩定範圍圖.23
圖 2-6. 高溫壓力標定實驗與二輝石溫度標定使用之樣品腔設計.25
圖 2-7. 室溫下同樣樣品腔設計不同傳壓介質壓力標定結果圖.27
圖 2-8. 1000 oC 與1200 oC 之壓力標定結果圖.28
圖 2-9. 室溫與高溫壓力標定比較圖.30
圖 2-10. 樣品區內溫度分布圖.31
圖 2-11. D 值對傳壓效率圖32
圖 2-12a 相同實驗條件,溫度對電功率圖.36
圖 2-12b 相同實驗條件,溫度對電阻圖.36
圖 2-13a. 不同實驗壓力,溫度對電功率圖.37
圖 2-13b. 不同實驗壓力,溫度對電阻圖.37
圖 2-14a. 不同加熱爐管厚度,溫度對電功率圖.38
圖2-14b. 不同加熱爐管厚度,溫度對電阻圖.38
圖 2-15a. 不同中心空洞直徑,溫度對電功率圖.39
圖 2-15b. 不同中心空洞直徑,溫度對電阻圖.39
圖 2-16.三種傳壓介質加溫時之型變行為圖.40
圖 4-1. 電子顯微鏡定量分析點大小示意圖.55
圖 4-2. 三成分實驗橄欖石產狀圖.56
圖 4-3. 被鐵鎢合金包裹之細粒橄欖石與大顆粒橄欖石成分圖.56
圖 4-4. 樣品中高溫、中溫、低溫區域示意圖.57
圖 4-5a. 樣品中橄欖石Fo 值隨空間分佈圖.58
圖 4-5b. 樣品中鐵鎂氧化物鎂值(Mg#)隨空間分佈圖.58
圖 4-5c. 樣品中鐵鎢合金鎢含量(W#)隨空間分佈圖.59
圖 4-6. (Fo91)50Fe50 之背反射電子(BSE)影相.60
圖 4-7. (Fo91)50(WO3)50 之二次電子(SEI)影相.61
圖 4-8. (Fo91)50W50 之二次電子(SEI)影相63
圖 4-9. (Fo91)50W50 樣品二次電子(SEI)影相64
圖 4-10. Fe50(WO3)50 之二次電子(SEI)影相.64
圖 4-11. Fe50(WO3)500 樣品囊包區域二次電子(SEI)影相65
圖 4-12. 橄欖石與鐵鎂氧化物鎂質相關圖.66
圖 4-13a. (Fo91)45Fe45(WO3)10 使用鉑囊包持溫240 分鐘後二次電子(SEI)影相.69
圖 4-13b. (Fo91)45Fe45(WO3)10 使用鉑囊包持溫1380 分鐘後二次電子(SEI)影相.70
圖 4-14. (Fo91)45Fe45(WO3)10 使用鉑囊包系列之產物成分隨時間變化圖70
圖 4-15a. (Fo91)45Fe45(WO3)10 使用鐵囊包持溫1080 分鐘後二次電子(SEI)影相.72
圖 4-15b. (Fo91)45Fe45(WO3)10 使用鐵囊包持溫480 分鐘後二次電子(SEI)影相.73
圖 4-16. (Fo91)49Fe49(WO3)2 持溫30 分鐘後二次電子(SEI)影相73
圖 4-17. (Fo91)49Fe49(WO3)2 持溫840 分鐘後二次電子(SEI)影相74
圖 4-18. (Fo91)49Fe49(WO3)2 之黑鎢礦包裹鐵鎢合金之二次電子(SEI)影相74
圖4-19. (Fo91)49Fe49(WO3)2 之直輝石二次電子(SEI)影相75
圖 4-20. (Fo91)45Fe45(WO3)10 使用鉑囊包持溫480 分鐘後鐵含量分佈圖76
圖 4-21 鐵鎢雙成分相圖78
圖 4-22a. 使用(Fo91)45Fe45(WO3)10 實驗後二次電子(SEI)影相81
圖 4-22b. 使用(Fo91)45Fe45W10 實驗後二次電子(SEI)影相.81
圖 4-23. 使用(Fo91)45Fe45(WO3)10 於6 GPa 實驗後二次電子(SEI)影相82
圖 5-1. 鎢-三氧化鎢、鎢-二氧化鎢與鐵-氧化鐵三種緩衝劑隨溫度變化圖.86
圖 5-2. 使用金屬鎢為起始原料包含之反應推測圖.87
圖 5-3. 使用氧化鎢為起始原料包含之反應推測圖.87
圖 5-4. (Fo91)49Fe49(WO3)2 系統中三氧化鎢與橄欖石反應示意圖.89
圖 5-5. (Fo91)49Fe49(WO3)2 系統中三氧化鎢與金屬鐵反應示意圖.90
圖 5-6. (Fo91)49Fe49(WO3)2 系統完整反應流程圖.91
圖 5-7. 含鎢未知相成分隨時間變化圖.94
圖 5-8. 氧分壓與實驗時間關係圖.98
圖 5-9. 鐵、鎂、鎢於各相間分異係數圖.99
圖 5-10. 鐵於鉑囊包內之濃度變化隨時間變化圖.99
圖 5-11a. 起始原料為三氧化鎢使用鉑囊包時氧分壓控制示意圖.104
圖 5-11b. 起始原料為三氧化鎢使用鐵囊包時氧分壓控制示意圖.105
圖 5-11c. 起始原料為金屬鎢使用鉑囊包時氧分壓控制示意圖.106
圖 5-11d. 起始原料為金屬鎢使用鐵囊包時氧分壓控制示意圖.107
圖 6-1. 起始原料中鎢/三氧化鎢比例與實驗後鐵鎢合金成分關係圖112
參考文獻 Andersson, J. O., and P. Gustafson, 1983: A thermodynamic evaluation of the iron tungsten system, Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 7(4), 317-326.
Bertranalvarez, Y., O. Jaoul, and R. C. Liebermann, 1992: Fe-Mg interdiffusion in single-crystal olivine at very high-pressure and controlled oxygen fugacity - technological advances and initial data at 7-GPa, Phys Earth Planet In, 70(1-2), 102-118.
Blundy, J. D., and B. J. Wood, 1991: Crystal-chemical controls on the partitioning of sr and ba between plagioclase feldspar, silicate melts, and hydrothermal solutions, Geochim. Cosmochim. Acta, 55(1), 193-209.
Blundy, J., and B. Wood, 1994: Prediction of crystal-melt partition-coefficients from elastic-moduli, Nature, 372(6505), 452-454.
Blundy, J., and B. Wood, 2003: Partitioning of trace elements between crystals and melts, Earth Planet Sc Lett, 210(3-4), 383-397.
Bohlen, S.R., and A. L. Boettcher, 1982: The Quartz <=> Coesite Transformation: a precise determination and the effects of other components, journal of geophysical research, 87, 7073-7078
Brett, R., 1971: The earth's core: speculations on its chemical equilibrium with the mantle. Geochim. Cosmochim. Acta 35, 203-21
Brice, J. C., 1975: Some thermodynamic aspects of growth of strained crystals, Journal of Crystal Growth, 28(2), 249-253.
Chabot, N. L., D. S. Draper, and C. B. Agee, 2005: Conditions of core formation in the Earth: Constraints from Nickel and Cobalt partitioning, Geochim. Cosmochim. Acta, 69(8), 2141-2151.
Chase, M.W., 1998. NIST-JANAF Thermochemical Tables, 4th edition. Journal Phys. Chem. Ref.DataMonograph, vol. 9. American Chemical Society,Washington, DC, USA. (Parts I and II).
Cottrell, E., M. J. Walter, and D. Walker, 2009: Metal-silicate partitioning of tungsten at high pressure and temperature: Implications for equilibrium core formation in Earth, Earth Planet Sc Lett, 281(3-4), 275-287.
Corgne, A., S. Keshav, B. J. Wood, W. F. McDonough, and Y. Fei, 2008: Metal-silicate partitioning and constraints on core composition and oxygen fugacity during Earth accretion, Geochim. Cosmochim. Acta, 72(2), 574-589.

Darken, L. S., and R.W. Gurry, 1945: The system iron-oxygen. I. the wustite field and related equilibira. J. Am. Chem. Soc., 67(8), 1398–1412
Ertel, W., H. S. C. Ooneill, D. B. Dingwell, and B. Spettel, 1996: Solubility of tungsten in a haplobasaltic melt as a function of temperature and oxygen fugacity, Geochim. Cosmochim. Acta, 60(7), 1171-1180.
Ertel, W., M. J. Walter, M. J. Drake, and P. J. Sylvester, 2006: Experimental study of platinum solubility in silicate melt to 14 GPa and 2273 K: Implications for accretion and core formation in Earth, Geochim. Cosmochim. Acta, 70(10), 2591-2602.
Eugster, H.P., 1957:Heterogeneous reactions involving oxidation and reduction at high temperatures and pressures. Journal of Chemical Physics, 26, 1760-1761.
Gasparik, T., 1989: Transformation of enstatite - diopside - jadeite pyroxenes to garnet, Contrib. Mineral. Petrol., 102(4), 389-405.
Gessmann, C. K., and D. C. Rubie, 2000: The origin of the depletions of V, Cr and Mn in the mantles of the Earth and Moon, Earth Planet Sc Lett, 184(1), 95-107.
Getting, I. C., 1998: New determination of the bismuth I-II equilibrium pressure: a proposed modification to the practical pressure scale, Metrologia, 35(2), 119-132.
Goldschmidt1937a. The Principles of Distribution of Chemical Elements in Minerals and Rocks. The Seventh Hugo Müller Lecture delivered before the Chemical Society on March 17th, 1937.
Grove, T. L., 1981: Use of fept alloys to eliminate the iron loss problem in 1-atmosphere gas mixing experiments - theoretical and practical considerations, Contrib. Mineral. Petrol., 78(3), 298-304.
Hillebrand, J., 2004: Characterization of the distribution of siderophile and highly siderophile elements in the Milton and Eagle station pallasites. Bachelor thesis.
Holzheid, A., P. Sylvester, H. S. C. O'Neill, D. C. Rubie, and H. Palme, 2000: Evidence for a late chondritic veneer in the Earth's mantle from high-pressure partitioning of palladium and platinum, Nature, 406(6794), 396-399.
Jakobsson, S. and N. Oskarsson, 1994: The system C-O in equilibrium with graphite at high pressure and temperature: An experimental study. Geochimica et Cosmochimica Acta, 58, 9-17.
Kusaba, K., L. Galoisy, J. Wang, M. T. Vanghan, and D. J. Weidner, 1993: Determination of phase-transition pressures of znte under quasi-hydrostatic conditions, Pure and Applied Geophysics, 141(2-4), 643-652, doi: 10.1007/BF00998350.
Li, J., and C. B. Agee, 1996: Geochemistry of mantle-core differentiation at high pressure, Nature, 381(6584), 686-689.
Li, J., and C. B. Agee, 2001: The effect of pressure, temperature, oxygen fugacity and composition on partitioning of nickel and cobalt between liquid Fe-Ni-S alloy and liquid silicate: Implications for the Earth's core formation, Geochim. Cosmochim. Acta, 65(11), 1821-1832.
Lindsley, D. H., and S. A. Dixon, 1976: Diopside-enstatite equilibria at 850degrees to 1400degreesc, 5 to 35 KBr, American Journal of Science, 276(10), 1285-1301.
Lloyd, E. C., 1971: Accurate characterization of the high pressure environment, NBS, Washington DC, 1-3 pp.
Jana, D., and D. Walker, 1997: The influence of silicate melt composition on distribution of siderophile elements among metal and silicate liquids, Earth Planet Sc Lett, 150(3-4), 463-472.
Jana, D., and D. Walker, 1997: The influence of sulfur on partitioning of siderophile elements, Geochim. Cosmochim. Acta, 61(24), 5255-5277.
Jaoul, O., Y. Bertranalvarez, R. C. Liebermann, and G. D. Price, 1995: Fe-Mg interdiffusion in olivine up to 9 GPa at t=600-900-degrees-C - experimental-data and comparison with defect calculations, Phys Earth Planet In, 89(3-4), 199-218.
Jaoul, O., B. Houlier, M. Cheraghmakani, R. Pichon, and R. C. Liebermann, 1987: Surface destabilization and laboratory-induced nonstoichiometry in san-carlos olivine, Physics and Chemistry of Minerals, 15(1), 41-53.
Jaeger, W. L., and M. J. Drake, 2000: Metal-silicate partitioning of Co, Ga, and W: Dependence on silicate melt composition, Geochim. Cosmochim. Acta, 64(22), 3887-3895.
Jones, J. H., and M. J. Drake, 1983: Experimental investigations of trace-element fractionation in iron-meteorites .2. the influence of sulfur, Geochim. Cosmochim. Acta, 47(7), 1199-1209.
Medard, E., C. A. McCammon, J. A. Barr, and T. L. Grove, 2008: Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules, Am Mineral, 93(11-12), 1838-1844.
Myers, J., and H. Eugster, 1983: The system Fe-Si-O: Oxygen buffer calibrations to 1500 K. Contributions to Mineralogy and Petrology, 82, 75-90.
Mysen, B. O., and D. Virgo, 1980: Trace-element partitioning and melt structure - an experimental-study at 1 atm pressure, Geochim. Cosmochim. Acta, 44(12), 1917-1930.
Nagasawa, H., 1966: Trace element partition coefficient in ionic crystals, Science, 152(3723), 767-769.
Newsom, H. E. 1990: in Origin of the Earth 273–-288 (Oxford Univ. Press, New York, 1990).
Newsom, H. E,. and M. J. Drake, 1982: The metal content of the eucrite parent body: Constraints from partitioning behavior of tungsten. Geochim. Cosmochim. Acta. 46, 2483-2489.
O'Neill, H. S. C., A. J. Berry, and S. M. Eggins, 2008: The solubility and oxidation state of tungsten in silicate melts: Implications for the comparative chemistry of W and Mo in planetary differentiation processes, Chemical Geology, 255(3-4), 346-359.
O’Neill, H. S. C. and H. Palme, 1998: in The Earth’s Mantle–-Composition, Structure and Evolution (ed. Jackson, I.) 3– -127 (Cambridge Univ. Press, Cambridge, UK, 1998).
Ohtani, E., H. Yurimoto, and S. Seto, 1997: Element partitioning between metallic liquid, silicate liquid, and lower-mantle minerals: Implications for core formation of the Earth, Phys Earth Planet In, 100(1-4), 97-114.
O’Neill, H. S., and M. I. Pownceby, 1993: Thermodynamic data from redox reactions at high-temperatures .1. an experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe- FeO, Co-Coo, Ni-MiO and Cu-Cu2O oxygen buffers, and new data for the W-WO2 buffer, Contrib. Mineral. Petrol., 114(3), 296-314.
Rammensee, W., and H. Wanke, 1977: On the partition coefficient of tungsten between metal and silicate and its bearing on the origin of the moon. proc. lunar ci. conf 8th. 399-409
Raterron, P., F. Bejina, J. C. Doukhan, O. Jaoul, and R. C. Liebermann, 1998: Olivine/Fe-metal equilibrium under high pressure: an ATEM investigation, Physics and Chemistry of Minerals, 25(7), 485-493.
Righter, K., and M. J. Drake, 1999: Effect of water on metal-silicate partitioning of siderophile elements: a high pressure and temperature terrestrial magma ocean and core formation, Earth Planet Sc Lett, 171(3), 383-399.
Righter, K., and C. K. Shearer, 2003: Magmatic fractionation of Hf and W: Constraints on the timing of core formation and differentiation in the Moon and Mars, Geochim. Cosmochim. Acta, 67(13), 2497-2507.
Righter, K., and N. L. Chabot, 2011: Moderately and slightly siderophile element constraints on the depth and extent of melting in early Mars, Meteorit. Planet. Sci., 46(2), 157-176.
Righter, K., M. J. Drake, and G. Yaxley, 1997: Prediction of siderophile element metal–silicate partition coefficients to 20 GPa and 2800 °C: the effect of pressure, temperature, fO2 and silicate and metallic melt composition, Phys. Earth Planet. Inter., 100, 115-134.
Righter, K., K. M. Pando, L. Danielson, and C.-T. Lee, 2010: Partitioning of Mo, P and other siderophile elements (Cu, Ga, Sn, Ni, Co, Cr, Mn, V, and W) between metal and silicate melt as a function of temperature and silicate melt composition, Earth Planet Sc Lett, 291(1-4), 1-9.
Ringwood, A. E ., 1966: The chemical composition and origin of the earth. In Advances in Earth Sciences, ed. P . M . Hurlyc, 287-356. (Cambridge, Mass : MIT Press)
Ross, N. L., M. Akaogi, A. Navrotsky, J. I. Susaki, and P. McMillan, 1986: phase-transitions among the CaGeO3 polymorphs (wollastonite, garnet, and perovskite structures) - studies by high-pressure synthesis, high-temperature calorimetry, and vibrational spectroscopy and calculation, Journal of Geophysical Research-Solid Earth and Planets, 91(B5), 4685-4696.
Schmitt, W., H. Palme, and H. Wanke, 1989: Experimental-determination of metal silicate partition-coefficients for p, co, ni, cu, ga, ge, mo, and w and some implications for the early evolution of the earth, Geochim. Cosmochim. Acta, 53(1), 173-185.
Siebert, J., A. Corgne, and F. J. Ryerson, 2011: Systematics of metal-silicate partitioning for many siderophile elements applied to Earth's core formation, Geochim. Cosmochim. Acta, 75(6), 1451-1489.
Srecec, I., A. Ender, E. Woermann, W. Gans, E. Jacobsson, G. Eriksson, and E. Rosen, 1987: Activity-composition relations of the magnesiowustite solid-solution series in equilibrium with metallic iron in the temperature-range 1050-1400-K, Physics and Chemistry of Minerals, 14(6), 492-498.
Taylor, J. R., V. J. Wall, and M. I. Pownceby, 1992: The calibration and application of accurate redox sensors, Am Mineral, 77(3-4), 284-295.
Ulmer, P., and R.W. Luth, 1991:The graphite-COH fluid equilibrium in P, T, fO2 space. An experimental determination to 30 kbar and 1600°C. Contributions to Mineralogy and Petrology, 106, 265 - 272.
Wiser, N. M., and B. J. Wood, 1991: Experimental-determination of activities in fe-mg olivine at 1400 K, Contrib. Mineral. Petrol., 108(1-2), 146-153.
Walter, M. J., and Y. Thibault, 1995: Partitioning of tungsten and molybdenum between metallic liquid and silicate melt, Science, 270(5239), 1186-1189.
Wanke, H., 1981: Constitution of terrestrial planets, Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 303(1477), 287-302.
Wood, B. J., and J. D. Blundy, 1997: A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt, Contrib. Mineral. Petrol., 129(2-3), 166-181.
Wood, B. J., M. J. Walter, and J. Wade, 2006: Accretion of the Earth and segregation of its core, Nature, 441(7095), 825-833.
Wood, B. J., and R. Trigila, 2001: Experimental determination of aluminous clinopyroxene-melt partition coefficients for potassic liquids, with application to the evolution of the Roman province potassic magmas, Chemical Geology, 172(3-4), 213-223.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-09-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-09-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw