進階搜尋


 
系統識別號 U0026-1008201212540900
論文名稱(中文) 具可拆卸機制封閉式耦合結構之非接觸式線型感應饋電軌道系統
論文名稱(英文) Contactless Linear Inductive Power Track System with Removable and Closed-shape Coupled Structure
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 詹凱筌
研究生(英文) Kai-Chuan Chan
學號 N26991213
學位類別 碩士
語文別 中文
論文頁數 99頁
口試委員 指導教授-李嘉猷
召集委員-魏炯權
口試委員-林法正
口試委員-白富升
中文關鍵字 線型感應供電軌道系統  匹配空間磁場  封閉與可拆卸機制電能拾取器  雙環型電能拾取器 
英文關鍵字 linear inductive power track system  matched with the profile of magnetic field  closed-shape and removable mechanism  double ring core 
學科別分類
中文摘要 本論文旨在研究產線電動搬運載具用非接觸式線型感應供電軌道系統,並應用非接觸式感應電能傳輸技術,研製電動搬運載具用具封閉與可拆卸機制電能拾取器之非接觸式感應饋電軌道,以建構具高系統性能與高電能傳輸效率之非接觸式線型感應饋電軌道系統。具可拆卸機制封閉型電能拾取器與傳統電能拾取器差異之處,在於其鐵芯耦合結構部份係採封閉可拆卸型式,並使感應供電軌道所產生之空間磁場拓樸與電能拾取器外形匹配,俾便進行耦合結構間之高效率感應電能傳輸。系統次級側以雙環型電能拾取器匹配空間磁場拓樸,且製作活動機構完成可拆卸機制。最後經由實驗得證,系統整體電能傳輸效率達60%,最大輸出功率為225W,並且成功實現具可拆卸機制封閉型電能拾取器設計。
英文摘要 This thesis is aimed at improving the existed problems of contactless linear inductive power track system in current industry. By adopting the contactless inductive power transmission techniques, this thesis will develop the inductive power pick-up coupler with closed-shape and removable mechanism of linear inductive power track for electric transport vehicles, and expected to construct a contactless linear inductive power track system with high performance and high power efficiency. The main feature of the proposed inductive power pick-up coupler is with the closed-shape and removable mechanism and its shape matched with the profile of magnetic field produced from the linear inductive power track. Furthermore, the secondary power pick-up make by double ring core to match the magnetic field. Finally, All the view of system efficiency is 60%, and maximal power output is 225 watts.
論文目次 中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XII
第一章緒論 1
1-1 研究動機 1
1-2 研究背景 2
1-3 研究方法 9
1-4 論文大綱 10
第二章 非接觸感應耦合原理與特性 11
2-1 前言 11
2-2 非接觸式電能傳輸技術 11
2-3 非接觸式線型軌道饋電系統特性 12
2-3-1 集膚效應 12
2-3-2 線型軌道磁場分佈特性 14
2-3-3 近接效應 16
2-4 非接觸式電能拾取器特性 17
2-4-1 磁性材料特性分析 17
2-4-2 開放式電能拾取器比較 20
2-4-3 封閉式電能拾取器 25
2-5 非接觸式線型軌道饋電系統耦合原理 28
2-6 系統整體架構 31
第三章 線型軌道耦合結構模擬與研製 32
3-1 前言 32
3-2 整體系統架構簡述 32
3-3 諧振電路分析 33
3-3-1 初級側諧振電路分析 34
3-3-2 次級側諧振電路分析 35
3-3-3 次級側反射阻抗與傳輸效率分析 37
3-4 驅動電路設計與選擇 38
3-5 全橋變流器分析 39
3-5-1 全橋諧振變流器特性分析 39
3-5-2 相移全橋諧振變流器控制方法分析 41
3-6 次級側電能拾取器耦合結構模擬與分析 48
3-7 整流濾波器 51
3-8 降壓式同步整流轉換器 55
第四章 線型軌道饋電系統硬體電路 57
4-1 前言 57
4-2 整體系統電路架構 57
4-3 初級側電路 59
4-3-1 全橋諧振變流器製作 59
4-3-2 降壓變壓器製作 62
4-3-3 PIC單晶片控制電路 63
4-3-4 初級側最大電流頻率追蹤機制 65
4-3-5 初級側電流取樣電路 66
4-4 次級側電路 67
4-4-1 整流濾波器 68
4-4-2 降壓式轉換器 68
4-5 耦合結構製作 69
4-6 非接觸式線型軌道饋電系統設計流程 74
第五章 系統模擬與實驗結果 77
5-1 前言 77
5-2 系統規格與硬體電路 77
5-3 IsSpice電路模擬 78
5-4 系統實驗結果與波形量測 82
第六章 結論與未來研究方向 89
6-1 結論 89
6-2 未來研究方向 90
參考文獻 91
參考文獻 參考文獻
[1] Y. Shen and X. Zhao, “Application of real-time multi-task management in automation guided system of tamper machine,” in Proc. Int. Conf. Computer Science and Service System, 2011, pp. 1130-1133.
[2] X. Tao, “Local obstacle avoidance planning of logistics system AGV based vector field,” in Proc. Int. Conf. Management Science and Industrial Engineering, 2011, pp. 1256-1259.
[3] J. Liang and Z. Rao, “Research and implementation of visual control technology with AGV,” in Proc. Int. Conf. Electric Information and Control Engineering, 2011, pp. 1588-1591.
[4] Y. Zheng and S. Fujimura, “Simulation of multi-load AGV system based on JIT production environment,” in Proc. IEEE Int. Conf. Computer Science and Information Technology, 2010, pp. 255-259.
[5] R. Gujjula and H. O. Gunther, “The impact of storage block assignment for import containers on AGV dispatching in highly automated seaport container terminals,” in Proc. IEEE Int. Conf. Industrial Engineering and Engineering Management, 2009, pp. 1739-1743.
[6] J. Yu, P. Lou, X. Qian, and X. Wu, “An intelligent real-time monocular vision- based AGV system for accurate lane detecting,” in Proc. ISECS Int. Colloq. Computing, Communication, Control, and Management, 2008, pp. 28-33.
[7] J. Park, Y. Park, and S. W. Kim, “AGV parking system using artificial visual land- Mark,” in Proc. Int. Conf. Control, Automation and Systems, 2008, pp. 1579-1582.
[8] S. Hoshino, J. Ota, A. Shinozaki, and H. Hashimoto, “Hybrid design methodology and cost-effectiveness evaluation of AGV transportation systems,” IEEE Trans. Autom. Sci. Eng., vol. 4, no. 3, pp. 360-372, Jul. 2007.
[9] S. Li and X. Hou, “Research on the AGV based robot system used in substation inspection,” in Proc. Int. Conf. Power System Technology, 2007, pp. 1-4.
[10] S. Hoshino, J. Ota, A. Shinozaki, and H. Hashimoto, “Comparison of an AGV transportation system by using the queuing network theory,” in Proc. IEEE Int. Conf. Intelligent Robots and systems, 2005, pp. 3785-3790.
[11] J. Ploeg, A. C. M. Knaap, and D. J. Verburg, “ATS/AGV-design, implementation and evaluation of a high performance AGV,” in Proc. IEEE Symp. Intelligent Vehicle, 2003, pp. 127-134.
[12] H. Zhu and D. Chen, “Study and implementation of infrared digital guiding on AGV,” in Proc. World Conqress on Intelligent Control and Automation, 2002, pp. 3224-3227.
[13] B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 140-147, Feb. 2004.
[14] X. Liu and S. Y. R. Hui, “Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 21-29, Jan. 2007.
[15] C. L. W. Sonntag, E. A. Lomonova, J. L. Duarte, and A. J. A. Vandenput, “Specialized receivers for three-phase contactless energy transfer desktop applications,” in Proc. Eur. Conf. Power Electronics and Applications, 2008, pp. 1-11.
[16] M. Mochizuki, A. Asada, T Ura, Z. Yoshida, R. Lwase, T. Goto, M. Fujita, M. Sato, O.L. Colombo, T. Tanaka, Z. Hong and K. Nagahashi, “Development of seafloor geodetic observation system based on AUV and submarine cable technologies, ” in Proc. IEEE Oceans, 2010, pp. 1-4.
[17] M. Mochizuki, A. Asada, T Ura, M. Fujita, M. Sato, Y. Matsumoto, O. L. Colombo, T. Tanaka, Z. Hong and K. Nagahashi, “Fundamental developments of new generaion seafloor geodetic system based on AUV technology, ” in Proc. IEEE Oceans,2008, pp. 1-6.
[18] K. W. Klontz, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “Contactless power delivery system for mining applications,” in Proc. IEEE Conf. Industry Applications Society Annual, pp. 1263-1269.
[19] H. Ayano, K. Yamamoto, N. Hino, and I. Yamato, “Highly efficient contactless electrical energy transmission system,” in Proc. IEEE IECON, 2003,pp. 1364-1369.
[20] B. M. Song, R. Kratz, and S. Gurol, “Contactless inductive power pickup system for maglev applications,” in Proc. Conf. Industry Applications Society Annual, 2002, pp. 1586-1591.
[21] C. S. Lin, S. G. Lin, C. F. Chang, H. H. Li, and T. R. Chen, “Model of contactless power transfer system for linear track,” in Proc. Int. Conf. Power Electronics and Drive System, 2009, 1075-1079.
[22] T. Gerrits, D. C. J. Krop, L. Encica, and E. A. Lomonova, “Development of a linear position independent inductive energy transfer system,” in Proc. IEEE Int. Conf. Electric Machines & Drives, 2011, pp. 1445-1449.
[23] J. Hirai, T. W. Kim, and A. Kawamura, “Wireless transmission of power and information and information for cableless linear motor drive,” IEEE Trans. Power Electron., vol. 15, no. 1, pp. 21-27, Jan. 2000.
[24] J. Jia, W. Liu, and H. Wang, “Contactless power delivery system for the underground flat transit of mining,” in Proc. Int. Conf. Electrical Machines and System, 2003, pp. 282-284.
[25] J. Huh, S. Lee, C. Park, G. H. Cho, and C. T. Rim, “High performance inductive power transfer system with narrow rail width for on-line electric vehicles,” in Proc. IEEE Energy Conversion Conqress and Exposition, 2010, pp. 647-651.
[26] M. Mcdonough, P. Shamsi, and B. Fahimi, “Application of multi-port power electronic interface for contactless transfer of energy in automotive applications,” in Proc. IEEE Conf. Vehicle Power and Propulsion, 2011, pp. 1-6.
[27] S. Ahn and J. Kim, “Magnetic field design for high efficient and low EMF wireless power transfer in on-line electric vehicle,” in Proc. Eur. Conf. Antennas and Propagation, 2011, pp. 3979-3982.
[28] W. Xie, H. Li, and C. Wang, “Performance analysis of sliding transformer in contactless inductive power transfer system,” in Proc. Int. Conf. Electrical Machines and System, 2009, pp. 4360-4363.
[29] D. Wesemann, S. Witte, and J. S. Michels, “Effects of multiple loads in a contactless, inductively coupled linear power transfer system,” in Proc. Int. Conf. Electrical and Electronics Engineering, 2009, pp. I-54-I-59.
[30] J. M. Barnard, J. A. Ferreira, and J. D. Wyk, “Optimising sliding transformers for contactless power transmission systems,” in Proc. IEEE PESC, 2002, pp. 245-251.
[31] J. M. Barnard, J. A. Ferreira, and J. D. Van Wyk, “Linear contactless power transmission systems for harsh environments,” in Proc. AFRICON, 1996, pp. 711-714.
[32] J. M. Barnard, J. A. Ferreira, and J. D. Wyk, “Optimized linear contactless power transmission systems for different applications,” in Proc. IEEE APEC, 2002, pp. 953-959.
[33] J. M. Barnard, J. A. Ferreira, and J. D. Wyk, “Sliding transformers for linear contactless power delivery,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 774-779, Dec. 1997.
[34] J. T. Boys, G. A. J. Elliott, and G. A. Covic, “An appropriate magnetic coupling coefficient for the design and comparison of ICPT pickups,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 333-335, Jan. 2007.
[35] M. Budhia, G. Covic, and J. Boys, “Magnetic design of a three-phase inductive power transfer system for roadway powered electric vehicles,” in Proc. IEEE Conf. Vehicle Power and Propulsion, 2010, pp. 1-6.
[36] C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[37] G. A. Covic, J. T. Boys, M. L. G. Kissin, and H. G. Lu, “A three-phase inductive power transfer system for roadway-powered vehicles,” in Proc. IEEE Trans. Ind. Electron., 2007, pp. 3370-3378.
[38] G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, “The design of a contact-less energy transfer system for a people mover system,” in Proc. Int. Conf. Power System and Technology, 2002, pp. 79-84.
[39] G. A. J. Elliott, J. T. Boys, and A. W. Green, “Magnetically coupled systems for power transfer to electric vehicles,” in Proc. Int. Conf. Power Electronics and Drive Systems, 1995, pp. 797-801.
[40] G. A. J. Elliott, G. A. Covic, D. Kacprzak, and J. T. Boys, “A new concept: Asymmetrical pick-ups for inductively coupled power transfer monorail systems,” in Proc. IEEE TMAG, 2006, pp. 3389-3391.
[41] D. Kacprzak, G. A. Covic, and J. T. Boys, “An improved magnetic design for inductively coupled power transfer system pickups,” in Proc. Int. Conf. Power Engineering, 2005, pp. 1133-1136.
[42] A. Kumar and A. P. Hu, “Linearly tuned wireless power pick-up,” in Proc. IEEE Int. Conf. Sustainable Energy Technology, 2010, pp. 1-6.
[43] M. L. G. Kissin, H. Hao, and G. A. Covic, “A practical multiphase IPT system for AGV and roadway applications,” in Proc. IEEE Energy Conversion Conqress and Exposition, 2010, pp. 1844-1850.
[44] U. K. Madawala, D. Thrimawithana, and N. Kularathna, “An ICPT supercapacitor technology for contactless power transfer with surge suppression,” in Proc. IEEE IECON, 2006, pp. 964-969.
[45] S. Raabe, G. A. Covic, J. T. Boys, C. Pennalligen, and P. Shekar, “Practical considerations in the design of multiphase pick-ups for contactless power transfer systems,” in Proc. IEEE IECON, 2010, pp. 753-758.
[46] D. J. Thrimawithana and U. K. Madawala, “A three-phase bi-directional IPT system for contactless charging of electric vehicles,” in Proc. IEEE Int. Symp. on Industrial Electronics, 2011, pp. 1957-1962.
[47] J. Lastowiecki and P. Staszewski, “Leakage inductance and flux density distribution in long magnetic core of sliding transformer,” in Proc.IEEE Int. Conf. Drive, Circuits and Systems, 2004, pp. 304-308.
[48] J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, Dec. 2006.
[49] K. W. Klontz, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “Contactless power delivery system for mining applications,” in Proc. IEEE Conf. Industry Applications Society Annual meeting, 1991,pp. 1263-1269.
[50] K. W. Klontz, A. Esser, R. R. Bacon, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “An electric vehicle charging system with universal inductive interface,” in Proc. Conf. Power Conversion, 2002, pp. 227-232.
[51] K. W. Klontz, A. Esser, P. J. Wolfs, and D. M. Divan, “Converter selection for electric vehicle charger systems with a high-frequency high-power link,” in Proc. IEEE PESC, 2002, pp. 855-861.
[52] “IPT charge for electric vehicles,” Conductix-Wampfler delachaux group, Germany, KAT9200-0001-E, 2009.
[53] “IPT charge for electric vehicles,” Daifuku., Japan, 1108-06CP-E, 2011.
[54] “非接觸供電,” AMIDOF., Taiwan, 2005.
[55] Schoneberger, “Primove contactless and catenary-free operation,” Bombardier Inc., 10832/SYS/09- 2010/en, Canada, 2010.
[56] M. Ryu, H. Cha, Y. Park, and J. Back, “Analysis of the contactless power transfer system using modelling and analysis of the contactless transformer,” in Proc. IEEE IECON, 2006, pp. 1036-1042.
[57] B. M. Song, R. Kratz, and S. Gurol, “Contactless inductive power pickup system for maglev applications,” in Proc. Conf. Industry Applications Society Annual, 2002, pp. 1586-1591.
[58] D. Kacprzak, G. A. Covic, and J. T. Boys, “An improved magnetic design for inductively coupled power transfer system pickups,” in Proc. Int. Conf. Power Engineering, 2006, pp. 1133-1136.
[59] S. Raabe, J. T. Boys, and G. A. Covic, “A high power coaxial inductive power transfer pickup, ” in Proc. IEEE Conf. Power Electronics Specialists, 2008, pp. 4320-4325.
[60] 張宇誠,具封閉型耦合結構非接觸式感應供電軌道之研究,國立成功大學電機工程學系碩士論文,2009年。
[61] J. T. Boys, G. A. J. Elliott, and G. A. Covic, “An Appropriate Magnetic Coupling Co-Efficient for the Design and Comparison of ICPT Pickups,” IEEE Trans. Power Electron.,vol. 22, no. 1, pp. 333-335, 2007.
[62] J. T. Boys, G. A. Covic, and A. W. Green, “Stability and control of inductively coupled power transfer systems,” Proc. Inst. Elect. Eng., vol. 147, no. 1, pp. 37-43, Jan. 2000.
[63] G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, “The design of a contact-less energy transfer system for a people mover system,” in Proc. Int. Conf. Power Systems Technology, 2000, pp. 79-84.
[64] K. W. Klontz, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “Contactless power delivery system for mining applications,” in Proc. IEEE Conf. Industry Applications Society Annual, 1991,pp. 1263-1269.
[65] X. Liu, W. M. Ng, C. K. Lee, and S. Y. Hui, “Optimal operation of contactless transformers with resonance in secondary circuits,” in Proc. IEEE APEC, 2008, pp. 645-650.
[66] 李依穎,非接觸式感應饋電技術應用於可動機具之研究,國立成功大學電機工程學系碩士論文,2006年。
[67] 杜明育,非接觸式線性感應供電軌道之研究,國立成功大學電機工程學系碩士論文,2007年。
[68] 陳勝建,陣列區塊感應結構應用於非接觸式饋電軌道系統之研究,國立成功大學電機工程學系碩士論文,2009年。
[69] 賴弘偉,分區激發感應結構於非接觸式多負載充電平台之研究,國立成功大學電機工程學系碩士論文,2009年。
[70] 李世華,電動載具用導軌型非接觸式感應饋電軌道之研製,國立成功大學電機工程學系碩士論文,2011年。
[71] 李嘉猷、詹凱筌、沈紘宇,“具封閉與可拆卸機制之非接觸式供電軌道用感應耦合結構,” 中華民國第三十二屆電力工程研討會論文集,2011年,1366-1370頁。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-08-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-08-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw