進階搜尋


下載電子全文  
系統識別號 U0026-1008201212101900
論文名稱(中文) 應用高頻驅動線路於多重聚焦超音波影像之重建
論文名稱(英文) Applying High-frequency Driving Circuit on High-Frequency Ultrasonic System for Multi-focus Image Reconstruction
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 黃鎮浩
研究生(英文) Cheng-Hao Huang
學號 p86994086
學位類別 碩士
語文別 英文
論文頁數 47頁
口試委員 指導教授-陳天送
口試委員-陳永福
口試委員-陳家進
口試委員-陳培展
口試委員-陳世中
中文關鍵字 高頻超音波  脈衝調變  高頻電路設計  影像對位 
英文關鍵字 high-frequency ultrasound  pulse width modulation  high-frequency circuit designed  image alignment 
學科別分類
中文摘要 醫用超音波具非侵入式以及即時成像的優點,是臨床廣泛使用的診斷工具。近年來高頻超音波的快速發展,醫用超音波影像由較深組織(如肝臟組織、心臟組織等),轉移到細微表淺組織評估(如皮膚病變、血管增生)。然而目前高頻超音波的解析度與可視景深要觀察血管增生都尚且不足,故本研究使用以高頻驅動線路與快速多重聚焦影像重建技術,來增加高頻超音波影像解析度及總可視景深範圍。本研究所設計的高頻驅動電路,具有脈衝調變、高功率、以及低成本的優勢,並與市售儀器所使用的單極性脈衝觸發電路做一比較。測試結果方面,本實驗利用50 MHz高頻超音波探頭搭配高速移動平台,可提供以下幾種不同的掃描模式:A-mode、B-mode、C-mode以及多重聚焦掃描,並利用時間增益補償(TGC)來回饋超音波衰減的物理特性,藉此提高組織深處影像對比度。在B-mode即時影像的程式設計,建構了利用參數自動產生馬達控制程式碼功能,減少了使用者操作的複雜度,更可以達到快速影像重建(每秒三張影像),影像的軸向與橫向長度分別為3.8 mm與6 mm。在多重聚焦影像的校正,本論文提出以影像對位的方法,分別以最小平方差(LSD)、相關係數法(Cross-correlation),本論文將相關係數法在LabVIEW上實現,在一秒內完成兩張B-mode影像的影像對位。超音波假體掃描的實驗結果指出,快速多重聚焦影像的軸向和橫向解析度分別為 50 μm和100 μm,可視深度為6 mm。結果顯示得到較佳的多重聚焦影像,且大幅增加了影像的可視深度,讓高頻超音波系統提供了更多資訊。
英文摘要 Medical ultrasound is widely used in clinical diagnosis because of noninvasive and real-time imaging. With the rapidly development of high frequency ultrasound in recent years, the research of medical ultrasonic image focuses on superficial tissue. However, the resolution and depth of field (DOF) of the current system are not enough to estimate angiogenesis. This study attempts to build the high frequency driving circuit and uses high speed multi-focus image reconstruction technique to increase the resolution and the total DOF. The high frequency driving circuit was designed using pulse width modulation (PWM) approach with high energy and low cost. In the experiment, the image was reconstructed with the echo signal of the 50 MHz transducer which performed the mechanical scanning by the three dimensional motor platform. There are several available scanning modes could be selected including A-mode, B-mode, C-mode, and multi-focus mode. The automatically generated code for motion controlling is developed in the system. It can reduce the complexity of operation and achieve high speed image reconstruction (3 frames per second). The axial and lateral width of the image is 3.8 mm and 6 mm respectively. We use the cross-correlation method to implement image alignment. From the test of ultrasonic phantom, the axial resolution and lateral resolution are 50 μm and 100 μm respectively in multi-focus image. In addition, the DOF was increased to around 6 mm, raise of 58%. The results indicate that the multi-focus image has higher performance and broader DOF.
論文目次 摘要 I
Abstract II
誌謝 III
Content IV
List of Tables VII
List of Figures VIII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation and objectives 2
1.2.1 Application of high frequency ultrasound system 2
1.3 Literatures Review 4
1.3.1 Studies of the pulser system 5
1.3.2 Studies of multi-focus image 6
Chapter 2 Theoretical development 7
2.1 The physical features of ultrasound 7
2.1.1 The foundational theory of ultrasound 7
2.1.2 The imaging theory of ultrasound 7
2.1.3 The resolution of the ultrasound 8
2.2 Electrical circuit of ultrasound system 9
2.2.1 The effect of pulser in the high frequency ultrasound system 10
2.2.2 Protection circuitry 10
2.3 The design of bipolar pulser 11
2.3.1 Microprocessor 12
2.3.2 Isolation circuit 13
2.3.3 High speed MOSFET driver 15
2.3.4 Enhancement-mode MOSFET pair 15
2.4 Scan mode of ultrasonic image 16
2.4.1 A-mode image (Amplitude mode image) 16
2.4.2 B-mode image (Brightness mode image) 16
2.4.3 C-mode image (Constant depth mode image) 17
2.4.4 Multi-focus mode image 17
2.5 Image alignment 18
2.5.1 Direct pixel-to-pixel alignment 18
2.5.2 Cross-correlation alignment 19
3.1 Pulser circuit design 20
3.1.1 Microprocessor 20
3.1.2 Driving circuit 23
3.1.3 Power supply circuit 26
3.2 System description 27
3.2.1 Hardware flow chart 27
3.2.2 Software flow chart 28
3.2.3 Reconstruction of real-time image 29
3.2.4 Reconstruction of multi-focus image by image alignment method 30
Chapter 4 Results and Discussion 32
4.1 Performance test of pulser circuit 32
4.2 Spectrum analysis of echo signals 33
4.3 Experiments for resolution test 36
4.3.1 Experiment I – Thin objects for axial resolution test 36
4.3.2 Experiment II –Coin for lateral resolution test 39
4.3.3 Experiment III – Wire phantom for SNR test 40
4.4 Real-time multi-focus image reconstruction 42
Chapter 5 Summary 44
Chapter 6 References 46
參考文獻 [1] K. K. Shung, “high frequency ultrasonic imaging,” Journal of Ultrasound in Medicine, vol. 17(1), pp. 25-30, 2009.
[2] D. A. Knspik, B. Starkoski, C. J. Pablin and F. S. Foster, "A 100-200 MHz ultrasound biomicroscope," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 47, pp. 1540-1549, 2000.
[3] F. S. Foster, C. J. Pavlin, K. A. Harasiewicz, D. A. Christopher and D. H. Turnbull, "Advances in ultrasound biomicroscopy," Ultrasound Med. Biol., vol. 26, pp. 1-27, 2000.
[4] J. A. Brown and G. R. Lockwood, “A low-cost, high-performance pulse generator for ultrasound imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 49(6), pp. 848–851, 2002.
[5] X. Xu, J. T. Yen, and K. K. Shung, “A low-cost bipolar pulse generator for high-frequency ultrasound applications,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 54(2), pp. 443–447, 2007.
[6] D. H. Turnbull, B. G. Starkoski, K. A. Harasiewicz, J. L. Semple, L. From, A. K. Gupta, D. N. Sauder, and F. S. Foster, “A 40-100 MHz B-scan ultrasound backscatter microscope for skin imaging,” Ultrasound Med. Biol., 1995.
[7] M. Vogt, B. Paul, S. Scharenberg, R. Scharenberg, and H. Ermert, “Development of a high ultrasound skin imaging system: Optimization utilizing time domain reflectometry and network analysis," Proc, IEEE US Symposium, vol. 1, pp. 744-747, 2003.
[8] C. K. Yeh, K. W. Ferrara, and D. E. Kruse, “High-resolution functional vascular assessment with ultrasound,” IEEE Trans. Med. Imag., vol. 23, pp. 1263–1275, 2004.
[9] C. K. Yeh, C. H. Chunh, J. J. Chen and J. J. Chen, “High frequency ultrasonic imaging system: a preliminary small animals study,” Int. J. Elec. Eng., vol.15(3), pp. 195-202, 2008.
[10] C. H. Fan, C. K. Yeh, P. H. Hsu and H. L. Liu, "Detection of blood-brain barrier disruption by contrast-enhanced high frequency ultrasound image: Small animals study," Int. IEEE Ultrason. Symp., pp 1788-1791,2009.
[11] N. A. Cohn, S. Y. Emelianov, M. A. Lubinski and M. O’Donnell, “An elasticity microscope. part I: methods,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 44(6), pp. 1304-1319, 1997.
[12] E. Master, T Spiry, B. Szende, and J. G. Tota, “Effect of laser rays on wound healing,” Am J Surg, vol. 122, pp. 532-535, 1971.
[13] T. M. Ho, “high frequency ultrasonic imaging system,” National Taiwan University, Institute of Electrical Engineering, Master Thesis, 2002.
[14] C. Passmann et al., “A 100-MHz Ultrasound Imaging System for Dermatologic and Ophthalmologic Diagnostics,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 41(5), pp. 545-552, 1996.
[15] L. J. Aplet and J. W. Carson, "A Faraday Effect Optical Isolator," Applied Optics, Vol. 3(4), pp. 544-545, 1964.
[16] DE2-70 FPGA demoboard, Altera.
[17] TLP250 Phtotocoupler, Toshiba, 2002.
[18] iCoupler® Digital Isolation, Analog devices.
[19] EL7158 ultra-high current pin driver, Milpitas, CA: Intersil Americas, 2003.
[20] TC6320 N- and P-channel enhancement-mode MOSFET pair, Sunnyvale, CA: Supertex Inc., 2003.
[21] G. R. Lockwood, D. H. Turnbull, D. A. Christopher and F. S. Foster, ”Beyond 30 MHz, applications of high-frequency Ultrasound Imaging” IEEE engineering in Medicine and Biology, vol. 15(6), pp. 60-71, 1996.
[22] P. Hadji, O. Hars, C. Wuster, K. Bock, U. S. Alberts, H. G. Bohnet, G. Emons and K. D. Schulz, “Stiffness index identifies patients with osteoporotic fractures better than ultrasound velocity or attenuation alone,” Maturitas, vol. 31(3), pp. 221-226, 1999.
[23] Richard Szeliski, “Image Alignment and StitchinDg: A Tutorial,” Foundations and Trends® in Computer Graphics and Vision, vol. 2(1), pp. 1-104, 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw