進階搜尋


下載電子全文  
系統識別號 U0026-1008201114530400
論文名稱(中文) 適用於電容式觸控面板之多點及平滑追蹤系統設計
論文名稱(英文) Design of Multi-Touch and Smooth Tracking System for Capacitive Touch Panel
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 林宇政
研究生(英文) U-Chen Lin
學號 N26980018
學位類別 碩士
語文別 中文
論文頁數 82頁
口試委員 指導教授-林志隆
口試委員-張璞曾
口試委員-翁若敏
口試委員-戴亞翔
口試委員-賴俊如
口試委員-戴政祺
口試委員-莊智清
中文關鍵字 電容式觸控面板  卡爾曼濾波器  模糊控制系統 
英文關鍵字 capacitive touch panel  Kalman filter  fuzzy control system 
學科別分類
中文摘要 本論文實現了電容式觸控面板的多點觸控系統。韌體將感測晶片所得訊號經過有限狀態機得到觸碰點數目和位置,接著判斷真實觸碰點位置,並傳輸至螢幕輸出;軟體部份開發了三種演算法,以卡爾曼濾波器(Kalman Filter)為基礎達到觸碰點的精確定位與平滑追蹤的目的。
由於掃描資料包含許多雜訊,未處理過的資料輸出在螢幕上會出現不規則的鋸齒狀線條,本論文第一個演算法採用卡爾曼濾波器,使觸碰點達到平滑的效果。直接觀察輸出線條難以量化其平滑程度,以瞬間加速度大小範圍作為平滑程度的指標,範圍越小代表平滑程度越好。由實驗結果可知,水平直線的加速度大小範圍由0.6 (感測器距離/取樣時間平方)縮小到0.01。由於雜訊參數為固定值,在手指快速移動時會出現追蹤速度不足與緩慢移動時平滑程度不足的現象。因此,第二個演算法搭配模糊控制系統來動態調整卡爾曼濾波器的參數,使追蹤速度和抑制雜訊能力提升。由實驗結果可知,手指快速移動時的延遲距離在第一個演算法為1.59公分,第二個演算法縮短為1.06公分,且第二個演算法在水平直線的加速度大小範圍縮小到0.005。此外,考慮輸出線條在快速轉彎時與原始訊號的吻合程度,提出第三個演算法以加速度項調整系統方程式,提高螢幕輸出位置和手指觸碰位置的吻合度。採用MATLAB模擬輸出線條與理想線條間的誤差,弦波資料在第二個演算法的平均誤差為0.1946單位長度,而第三個演算法的平均誤差縮小為0.0657單位長度。本論文所開發的演算法已實際應用於電容式觸控面板並驗證其效能,成功地達到多點觸控辨識的功能。
英文摘要 The multi-touch system applied to capacitive touch panel is realized in this work. During the firmware process, signals from sensor ICs are inputted to a finite state machine to obtain the number of touch points and the touch position. The actual points are then determined, and displayed on the screen. Three proposed algorithms are developed in the software, and these algorithms can improve the precision of positioning and smooth the tracking of the lines.
Since the raw data is detected with noise, the tracking of touch points will be rough if the raw data is directly displayed on the screen. To cope with this, the first algorithm called the Kalman filter is used to smooth the tracking of touch points. The range of instant acceleration versus time reveals the level of smoothness - the smaller the range, the smoother the result. In the experimental result on the horizontal line, the range of raw data is 0.6 (sensor distance / (sample time)2), and the range is decreased to 0.01 after the first algorithm. Due to the fact that the parameters of the Kalman filter are fixed, the tracking speed is slow while the moving speed is fast, and the level of smoothness is insufficient while the moving speed is slow. The second algorithm combines the Kalman filter with a fuzzy control system to adjust the parameters of Kalman. Thus, the second algorithm improves the tracking speed and level of smoothness. For example, while moving fast on a horizontal line, the delay distance of the first algorithm is 1.59 cm, and distance of the second algorithm is 1.06 cm. From the experimental result on the horizontal line, the range of acceleration of the second algorithm is decreased to 0.005. When turning a corner, considering the level of match between the raw data and the output of algorithm, the third algorithm adds the index of acceleration to the transfer function in the Kalman filter, while improving the level of match between the touch position and the position on the screen. MATLAB simulation is used to calculate the error between the ideal track and the output track of the algorithm. Taking sin wave as an example, the average error in the second algorithm is 0.1946 unit distance, and the average error in the third algorithm is 0.00657 unit distance. All the algorithms in this work are applied to the capacitive touch panel system, and the system performs multi-touch operation.
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論
1.1 觸控式面板的歷史與發展 1
1.2 研究目的與動機 5
1.3 論文內容簡介 9
第二章 電容式觸碰面板多點觸控設計介紹
2.1系統硬體功能介紹 10
2.2 電容式面板掃描方式 12
2.3 應用於多點觸控的韌體設計流程 18
2.4 應用程式端處理 26
第三章 平滑追蹤演算法設計
3.1 卡爾曼濾波器介紹 30
3.2 模糊卡爾曼濾波器 41
3.3 加速度調整卡爾曼濾波器 47
第四章 觸控系統演算法效能之測試與探討
4.1 實現於觸控面板系統的演算法效能定義 50
4.2 實驗設計 56
4.3 實驗數據 57
第五章 結論與展望
5.1 結論 77
5.2 未來展望 78
參考文獻 79
參考文獻 [1] J. Y. Ruan, P. C. P Chao, and W. D. Chen, “A Multi-Touch Interface Circuit for a Large-sized Capacitive Touch Panel,” IEEE Sensors Conference, pp. 309-314, 2010.
[2] S. Ko, H. Shin, J. Lee, H. Jang, B. C. So, I. Y, and K. Lee, “Low Noise Capacitive Sensor for Multi-touch Mobile Handset’s Applications,” IEEE Asian Solid-State Circuits Conference, pp. 1-4, 2010.
[3] W. C. Chun, T. Y. Chang, K. C. Su, C. J. Hsu, and C. C. Lai, “The Structure and Driving Method of Multi-Touch Resistive Touch Panel,” SID Symposium Digest of Technical Papers, vol. 41, Issue 1, pp. 541-543, 2010.
[4] S. W. Chan and Y. Lu, “Capacitive Multi-Touch Controller Development Platform,” SID Symposium Digest, vol. 40, pp. 1287-1296, June 2009
[5] B. Lee, I. Hong, Y. Uhm, and S. Park, “The Multi-Touch System with High Applicability using Tri-axial Coordinate Infrared LEDs,” IEEE Transactions on Consumer Electronics, vol. 55, no. 4, pp. 2416-2424, November 2009.
[6] H. Fukuda and K. Sakamoto, “Touch-panel Interface System Which Can Recognize Who Touched The Screen and Where Was Pointed,” IEEE INEC, pp. 766-771, 2008.
[7] A. Agarwal, S. Izadi, M. Chandraker, and A. Blake, “High Precision Multi-touch Sensing on Surfaces using Overhead Cameras,” IEEE Computer Society, pp. 197-200, 2007.
[8] F. R. Tolmasky,; R. Williamson, C. Blumenberg, P. L. Coffman, “Portable multifunction device, method, and graphical user interface for translating displayed content,” United States Patent, no. 7966578, June 2011.

[9] R. K. Mehra, “On the Identification of Variances and Adaptive Kalman Filtering,” IEEE Transactions on Automatic Control, vol. AC-15, no. 2, pp. 175-184, April 1970.
[10] D. J. Jwo and S. H. Wang, “Adaptive Fuzzy Strong Tracking Extended Kalman Filtering for GPS Navigation,” IEEE Sensors Journal, vol. 7, no. 5, pp. 778-789, May 2007.
[11] A. Chatterjee and F. Matsuno, “A Neuro-Fuzzy Assisted Extended Kalman Filter-Based Approach for Simultaneous Localization and Mapping (SLAM) Problems,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 5, pp. 984-997, October 2007.
[12] D. J. Jwo and C. H. Tseng, “Fuzzy Adaptive Interacting Multiple Model Unscented Kalman Filter for Integrated Navigation,” IEEE International Conference on Control Application, pp. 1684-1689, 2009.
[13] T. M. Wang and M. D. Ker, “Design and Implementation of Readout Circuit on Glass Substrate for Touch Panel Applications,” IEEE Journal of Display Technology, vol. 6, No. 8, pp. 290-297, August 2010.
[14] 莊瑞榮,“卡門濾波器於降低語音雜訊之應用”,國立成功大學電機工程學系碩士論文,民國八十九年。
[15] 莊峰輔,“卡爾曼濾波器應用於空載GPS/INS測量數據求定重力場之研究”,國立成功大學測量及空間資訊學系碩士論文,民國九十三年。
[16] 李浩緯,“應用卡爾曼濾波器在GPS接收器的追蹤技術”,國立交通大學電機與控制工程學系學系碩士論文,民國九十五年。
[17] 林仲璋,“複數型卡爾曼濾波器於電力系統諧波動態估測之應用”,國立成功大學電機工程學系碩士論文,民國九十一年。
[18] 鄭陳鴻,“利用卡爾曼適應性觀測器於錯誤偵測與性能恢復”,國立成功大學電機工程學系碩士論文,民國九十四年。
[19] 彭彥斌,“擴增性卡曼濾波器應用於微型振動陀螺儀之即時控制系統”,國立交通大學機械工程學系碩士論文,民國九十七年。
[20] R.E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Journal of Basic Engineering 82 (Series D): pp. 35-45, 1960.
[21] R.L. Eubank, “A Kalman Filter Primer,” Chapman & Hall/CRC, 2006.
[22] J. George, “A Kalman Filter Approach to Model-error Control Synthesis,” State University of New York at Buffalo. Mechanical, 2007.
[23] G. Chen, “Approximate Kalman Filtering,” World Scientific, 1993.
[24] M. S. Grewal, and A. P. Andrews, “Kalman Filtering Theory and Practice,” Prentice-Hall Inc., 1993.
[25] C. C. Lai and C. C. Tsai, “Neural Calibration and Kalman Filter Position Estimation for Touch Panels,” IEEE International Conference on Control Applications, pp. 1491-1496, 2004.
[26] 劉家良,“適應性卡爾曼濾波器於低轉速控制之應用”,國立成功大學電機工程學系碩士論文,民國九十二年。
[27] 姚冠宇,“適應性卡曼濾波器於緊耦合架構INS/GPS整合系統之研究”,國立成功大學測量與空間資訊學系碩士論文,民國九十九年。
[28] L. X. Wang, “Design and Analysis of Fuzzy Identifiers of Nonlinear Dynamic Systems,” IEEE Transactions on Automatic Control, vol. 40, no. 1, pp. 11-23, August 1995.
[29] C. W. Tao and J. S. Taur, “Robust Fuzzy Control for a Plant with Fuzzy Linear Model,” IEEE Transactions on Fuzzy Systems, vol. 13, no. 1, pp. 30-41, February 2005.
[30] T. Melange, M. Nachtegael and E. E. Kerre, “Fuzzy Random Impulse Noise Removal from Color Image Sequences,” IEEE Transactions on Image Processing, vol. 20, no. 4, pp. 959-970, April 2011.
[31] Y. Liu, S. Zhao and J. Lu, “A New Fuzzy Impulsive Control of Chaotic Systems Based on T-S Fuzzy Model,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 2, pp. 393-398, April 2011.
[32] R. Vepa, “Nonlinear, Optimal Control of a Wind Turbine Generator,” IEEE Transactions on Energy Conversion, vol. 26, no. 2, pp. 468-478, June 2011.
[33] H. T. Nguyen, “A First Course in Fuzzy and Neural Control,” Chapman & Hall/CRC Press, 2003.
[34] J. A. Farrell and M. M. Polycarpou, “Adaptive Approximation Based Control: Unifying Neural, Fuzzy and Traditional Adaptive Approximation Approaches,” Polycarpou / Wiley-Interscience, 2006.
[35] D. E. Applebaum, “Adaptive Fuzzy Modeling and Control of Chaotic Dynamical Systems,” University of Colorado at Denver., 1999.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw