進階搜尋


下載電子全文  
系統識別號 U0026-1008201014162600
論文名稱(中文) 利用陳化處理二氧化鈦/禾樂石複合光觸媒粉末之影響
論文名稱(英文) Effects of aging on TiO2/halloysite composite used as photocatalyst
校院名稱 成功大學
系所名稱(中) 資源工程學系碩博士班
系所名稱(英) Department of Resources Engineering
學年度 98
學期 2
出版年 99
研究生(中文) 陳建誌
研究生(英文) Chien-Chih Chen
學號 n4697118
學位類別 碩士
語文別 中文
論文頁數 79頁
口試委員 指導教授-黃紀嚴
口試委員-溫紹炳
口試委員-申永輝
中文關鍵字 二氧化鈦  禾樂石  陳化處理  光觸媒  相轉換 
英文關鍵字 TiO2  halloysite  aging  photocatalyst  anatase  phase transformation 
學科別分類
中文摘要 摘要
光觸媒是一種藉由光產生光化學反應的物質,可分解多數的有害化學物質,對於提升環境淨化技術有相當大的助益。二氧化鈦因具有能隙大且無毒的特性,因而在光觸媒材料中被廣泛的使用,但二氧化鈦卻有低比表面積及熱穩定不佳的缺點,使其在發展上有所限制,如何改善其缺點則為現今學者研究的重點之一。
本研究利用陳化製程改進溶膠凝膠法製得的二氧化鈦/禾樂石複合粉末,複合粉末藉由異質成核機制,可以提高其比表面積,但卻無法有效解決二氧化鈦部分團聚的問題。透過陳化處理複合粉末,不僅可以控制二氧化鈦晶粒成長速率,並達到改善低比表面積及熱穩定不佳的目的。於商業應用上,二氧化鈦與禾樂石皆為白色粉末,較低價的禾樂石與二氧化鈦複合後可部分取代二氧化鈦,達到節省原料之效。
本研究將複合粉末利用XRD、BET、SEM等儀器推測其核為禾樂石,微小之二氧化鈦粒子披覆其上,藉由FTIR確認二氧化鈦與禾樂石接合情形,並發現經過陳化處理過的複合粉末具有較高的比表面積及熱穩定性。在光反應降解亞甲基藍測試方面,施以陳化處理之複合粉末具有超越未陳化處理之複合粉末之光催化效果,並超越市售P25光觸媒,主要原因為陳化製程能有效解決二氧化鈦部分團聚之問題,提升光反應之效能。
英文摘要 Abstract
TiO2 has the characteristics of large band gap and non-toxic, and therefore is extensively used as a photocatalyst material. Recent researches show that how to overcome the deficiencies to increase the activity of TiO2 due to its low surface area.
In this study, halloysite is used as substrate for loading TiO2 particles, which was prepared by sol-gel method. Aging treatment may modify the agglomeration and decrease crystallite size of TiO2.The transformation temperature of anatase-to-rutile phase was postponed because of heterogeneous nucleation mechanism and aging treatment. In commercial applications, more low-cost halloysite could partially replace the composite of TiO2 to reduce costs efficiency in raw materials.
The composite powders were characterized by XRD, BET, SEM and so on for assuming that halloysite is regarded as substrate and TiO2 is dispersed on it. The surface area increased from 24.65 m2/g to 32.217 m2/g at 750℃ after aging. The transformation temperature of anatase-to-rutile phase increased from 650℃ to 850℃. The result of FTIR confirmed the chemical bonding of Si-O-Ti, and found that aged composite powders with high specific surface area and thermal stability. The results of MB degradation showed the photoactivity of the aged composite was higher than which without aged composite.

論文目次 總目錄
摘要 I
Abstract II
致謝 III
總目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1-1 前言 1
1-2 研究目的 3
第二章 理論基礎 4
2-1 禾樂石簡介 4
2-1-1 禾樂石結構 4
2-2 二氧化鈦簡介 6
2-2-1 二氧化鈦結構 6
2-2-2 光觸媒反應原理 10
2-2-3 二氧化鈦光催化機制 12
2-3 溶膠凝膠(sel-gel)法及鍵結模式 17
2-3-1 各式光觸媒的製備 17
2-3-2 溶膠凝膠法 20
2-3-3 影響溶膠凝膠法的因素 22
2-3-4 沉澱後的陳化處理 26
2-3-5 二氧化鈦/禾樂石複合粉末鍵結模式 27
2-3-6 關於TiO2相變動力學的前人研究 28
第三章 實驗方法與步驟 29
3-1 實驗藥品 29
3-2 實驗方式及流程 30
3-2-1 實驗方式簡述 30
3-2-2 起始膠體製備 31
3-2-3 熱處理條件 32
3-2-4 未陳化處理複合粉末製備 32
3-3 性質分析 35
3-3-1 物理性質分析 35
第四章 結果與討論 43
4-1 物理性質分析 44
4-1-1 熱行為分析 44
4-1-2 結晶相鑑定及結晶晶徑分析 47
4-1-3 粉末粒徑與比表面積分析 52
4-1-4 粉末表面鍵結 57
4-1-5 粉末型態與微結構觀察 59
4-2 光催化效能測試 67
第五章 結論與建議 74
參考文獻 75

參考文獻 參考文獻
[1]A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238 (1972) 37-+.
[2]S.R. Levis, P.B. Deasy, Characterisation of halloysite for use as a microtubular drug delivery system. Int J Pharm 243 (2002) 125-134.
[3]A. Singer, M. Zarei, F.M. Lange, K. Stahr, Halloysite characteristics and formation in the northern Golan Heights. Geoderma 123 (2004) 279-295.
[4]C. Klein, J. C.S. Hurlbut, Manual of mineralogy/21st ed., John Wiley & Sons, Inc., 1993.
[5]行政院文化建設委員會, 台灣大百科全書, in, 2007.
[6]X. Ma, W.J. Bruckard, R. Holmes, Effect of collector, pH and ionic strength on the cationic flotation of kaolinite. Int J Miner Process 93 (2009) 54-58.
[7]林佩蓉, 利用溶膠凝膠法製備二氧化鈦-活性碳複合粉末及光催化效果之研究. 國立成功大學資源工程研究所碩士論文 (2007).
[8]I. Bedja, P.V. Kamat, Capped Semiconductor Colloids - Synthesis and Photoelectrochemical Behavior of TiO2-Capped Sno2 Nanocrystallites. J Phys Chem-Us 99 (1995) 9182-9188.
[9]A. Giraudeau, F.-R.F. Fan, A.J. Bard, Semiconductor electrodes. 30. Spectral sensitization of the semiconductors titanium oxide (n-TiO2) and tungsten oxide (n-WO3) with metal phthalocyanines. Journal of the American Chemical Society 102 (1980) 5137–5142.
[10]R.W. Fessenden, P.V. Kamat, Rate Constants for Charge Injection from Excited Sensitizer into SnO2, ZnO, and TiO2 Semiconductor Nanocrystallites. J Phys Chem-Us 102 (1995) 12902–12906.
[11]P.D. Cozzoli, R. Comparelli, E. Fanizza, M.L. Curri, A. Agostiano, D. Laub, Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: A semiconductor/metal nanocomposite in homogeneous nonpolar solution. Journal of the American Chemical Society 126 (2004) 3868-3879.
[12]N. Serpone, E. Pelizzetti, M. Gratzel, Photosensitization of Semiconductors with Transition-Metal Complexes - a Route to the Photoassisted Cleavage of Water. Coordin Chem Rev 64 (1985) 225-245.
[13]A. Mills, S. LeHunte, An overview of semiconductor photocatalysis. J Photoch Photobio A 108 (1997) 1-35.
[14]M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis. Chem Rev 95 (1995) 69-96.
[15]I. Willner, Photoswitchable biomaterials: En route to optobioelectronic systems. Accounts Chem Res 30 (1997) 347-356.
[16]白曛綾, 光觸媒技術控制都市空氣污染之應用, in, 2003.
[17]Y.M. Xu, W. Zheng, W.P. Liu, Enhanced photocatalytic activity of supported TiO2: dispersing effect of SiO2. J Photoch Photobio A 122 (1999) 57-60.
[18]K.M. Reddy, S.V. Manorama, A.R. Reddy, Bandgap studies on anatase titanium dioxide nanoparticles. Mater Chem Phys 78 (2003) 239-245.
[19]K. Nagaveni, M.S. Hegde, N. Ravishankar, G.N. Subbanna, G. Madras, Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 20 (2004) 2900-2907.
[20]C.H. Hung, B.J. Marinas, Role of chlorine and oxygen in the photocatalytic degradation of trichloroethylene vapor on TiO2 films. Environ Sci Technol 31 (1997) 562-568.
[21]E. Hosono, S. Fujihara, K. Kakiuchi, H. Imai, Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. Journal of the American Chemical Society 126 (2004) 7790-7791.
[22]K.J. Kim, K.D. Benkstein, J. van de Lagemaat, A.J. Frank, Characteristics of low-temperature annealed TiO2 films deposited by precipitation from hydrolyzed TiCl4 solutions. Chem Mater 14 (2002) 1042-1047.
[23]曹茂盛, 關長斌, 徐甲強, 奈米材料導論, 2002.
[24]李秉紘, 奈米二氧化鈦插層高嶺石/DMSO複合粉末製備光觸媒材料. 國立成功大學資源工程研究所碩士論文 (2008).
[25]楊子寬, 利用溶膠凝膠法製備TiO2-Al2O3粉末及對TiO2光催化效果影響之研究. 國立成功大學資源工程研究所碩士論文 (2006).
[26]R.S. Sonawane, S.G. Hegde, M.K. Dongare, Preparation of titanium(IV) oxide thin film photocatalyst by sol-gel dip coating. Mater Chem Phys 77 (2003) 744-750.
[27]N. Kaliwoh, J.Y. Zhang, I.W. Boyd, Titanium dioxide films prepared by photo-induced sol-gel processing using 172 nm excimer lamps. Surf Coat Tech 125 (2000) 424-427.
[28]B.E. Yoldas, Hydrolysis of Titanium Alkoxide and Effects of Hydrolytic Polycondensation Parameters. J Mater Sci 21 (1986) 1087-1092.
[29]K.N.P. Kumar, J. Kumar, K. Keizer, Effect of Peptization on Densification and Phase-Transformation Behavior of Sol Gel-Derived Nanostructured Titania. J Am Ceram Soc 77 (1994) 1396-1400.
[30]S. Doeuff, M. Henry, C. Sanchez, J. Livage, Hydrolysis of Titanium Alkoxides - Modification of the Molecular Precursor by Acetic-Acid. J Non-Cryst Solids 89 (1987) 206-216.
[31]R. Aelion, A. Loebel, F. Eirich, Hydrolysis of Ethyl Silicate. Journal of the American Chemical Society 72 (1950) 5705-5712.
[32]吳炳佑, 含TiO2光催化膜之製備與性質. 國立中央大學化學工程研究所博士論文 (1995).
[33]H.Y. Ha, M.A. Anderson, Photocatalytic degradation of formic acid via metal-supported titania. J Environ Eng-Asce 122 (1996) 217-221.
[34]X.Z. Ding, Y.Z. He, Study of the room temperature ageing effect on structural evolution of gel-derived nanocrystalline titania powders. J Mater Sci Lett 15 (1996) 320-322.
[35]H.I. Hsiang, S.C. Lin, Effects of aging on nanocrystalline anatase-to-rutile phase transformation kinetics. Ceram Int 34 (2008) 557-561.
[36]M.N. Chong, V. Vimonses, S.M. Lei, B. Jin, C. Chow, C. Saint, Synthesis and characterisation of novel titania impregnated kaolinite nano-photocatalyst. Micropor Mesopor Mat 117 (2009) 233-242.
[37]D. Beydoun, R. Amal, Implications of heat treatment on the properties of a magnetic iron oxide-titanium dioxide photocatalyst. Mat Sci Eng B-Solid 94 (2002) 71-81.
[38]Z.Z. Lu, M. Ren, H.B. Yin, A.L. Wang, C. Ge, Y.S. Zhang, L.B. Yu, T.S. Jiang, Preparation of nanosized anatase TiO2-coated kaolin composites and their pigmentary properties. Powder Technol 196 (2009) 122-125.
[39]M. Sabzi, S.M. Mirabedini, J. Zohuriaan-Mehr, M. Atai, Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Prog Org Coat 65 (2009) 222-228.
[40]E. Ukaji, T. Furusawa, M. Sato, N. Suzuki, The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter. Appl Surf Sci 254 (2007) 563-569.
[41]B.J. Ninness, D.W. Bousfield, C.P. Tripp, Formation of a thin TiO2 layer on the surfaces of silica and kaolin pigments through atomic layer deposition. Colloid Surface A 214 (2003) 195-204.
[42]C. Perego, R. Revel, O. Durupthy, S. Cassaignon, J.-P. Jolivet, Thermal stability of TiO2-anatase:Impact of nanoparticles morphology on kinetic phase transformation. Solid State Sci 12 (2009) 989-995.
[43]J.L. Hebrard, P. Nortier, M. Pijolat, M. Soustelle, Initial Sintering of Submicrometer Titania Anatase Powder. J Am Ceram Soc 73 (1990) 79-84.
[44]Y. Hu, H.L. Tsai, C.L. Huang, Effect of brookite phase on the anatase-rutile transition in titania nanoparticles. J Eur Ceram Soc 23 (2003) 691-696.
[45]許樹恩, 吳泰伯, X光繞射原理與材料結構分析, 1996.
[46]溫明璋, 奈米二氧化鈦粉體之製備與相轉換動力分析. 台灣大學化學工程研究所碩士論文 (2002).
[47]Y. Oguri, R.E. Riman, H.K. Bowen, Processing of Anatase Prepared from Hydrothermally Treated Alkoxy-Derived Hydrous Titania. J Mater Sci 23 (1988) 2897-2904.
[48]H.Z. Zhang, J.F. Banfield, New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles. Am Mineral 84 (1999) 528-535.
[49]H.J. Hofler, R.S. Averback, Grain-Growth in Nanocrystalline TiO2 and Its Relation to Vickers Hardness and Fracture-Toughness. Scripta Metall Mater 24 (1990) 2401-2406.
[50]S. Sivakumar, P.K. Pillai, P. Mukundan, K.G.K. Warrier, Sol-gel synthesis of nanosized anatase from titanyl sulfate. Mater Lett 57 (2002) 330-335.
[51]N. Uekawa, J. Kajiwara, K. Kakegawa, Y. Sasaki, Low temperature synthesis and characterization of porous anatase TiO2 nanoparticles. J Colloid Interf Sci 250 (2002) 285-290.
[52]D. Kibanova, M. Trejo, H. Destaillats, J. Cervini-Silva, Synthesis of hectorite-TiO2 and kaolinite-TiO2 nanocomposites with photocatalytic activity for the degradation of model air pollutants. Appl Clay Sci 42 (2009) 563-568.
[53]Q.L. Cheng, C.Z. Li, V. Pavlinek, P. Saha, H.B. Wang, Surface-modified antibacterial TiO2/Ag+ nanoparticles: Preparation and properties. Appl Surf Sci 252 (2006) 4154-4160.
[54]Y.C. Ng, C.Y. Jei, M. Shamsuddin, Titanosilicate ETS-10 derived from rice husk ash. Micropor Mesopor Mat 122 (2009) 195-200.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-08-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw