進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1007202010304900
論文名稱(中文) 鐵電性雙穩態雙頻液晶顯示裝置
論文名稱(英文) Bistable Dual Frequency Liquid Crystal Devices Assisted by Ferroelectric Liquid Crystals
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 顏麒峰
研究生(英文) Chi-Fong Yen
學號 N36074233
學位類別 碩士
語文別 英文
論文頁數 106頁
口試委員 指導教授-劉瑞祥
口試委員-陳雲
口試委員-許梅娟
口試委員-劉俊彥
口試委員-鍾宜璋
中文關鍵字 雙穩態裝置  雙頻液晶  鐵電性液晶  膽固醇液晶  光聚合法  高分子穩定膽固醇液晶 
英文關鍵字 Bistable device  Dual frequency liquid crystal  Ferroelectric liquid crystal  Cholesteric liquid crystal  Photo-polymerization  Polymer stabilized cholesteric liquid crystal 
學科別分類
中文摘要 近年來人類對於節能設備的需求日益增長,在所有的能源消耗中,人類將大部分能量用於維持建築物舒適的室內環境。為了克服這個能源問題,發展節能智慧窗戶變得越來越重要。液晶在發展通過外部刺激控制光學行為的光學元件方面具有巨大潛力,該裝置也可用於節能智慧窗戶。在這項研究中,我們通過雙頻向列液晶HEF951和手性鐵電性液晶3C通過光聚合製備了一系列雙穩態膽固醇型液晶裝置。因為在驅動電壓下施加高頻或低頻的交流電場可以影響雙頻向列液晶的排列,雙頻向列液晶為這些雙穩態液晶裝置提供一種新方法操作。手性鐵電性液晶可以誘導向列型液晶形成膽固醇型液晶相,並且降低了這些雙穩態液晶裝置的驅動電壓和響應時間。如果在這些雙穩態液晶裝置中形成聚合物網絡之後,響應時間會進一步減少。這些雙穩態液晶裝置可以顯示並維持不透明的焦錐態或透明的平面態而不消耗任何能量,並且可以通過一步方法容易地從一種狀態切換到另一種狀態。另外這些雙穩態液晶裝置的響應時間足夠快速,因此可以被應用於液晶顯示器及其他節能裝置。
英文摘要 The demand for energy-saving devices has been increasing in recent years. Among overall energy consumption, human spend most of energy on sustaining the comfortable indoor environment in buildings. To overcome this problem, developing the energy-saving smart windows and some other related devices becomes more and more important. Liquid crystals have a great potential in developing photonic devices which can control the optical behavior of liquid crystals by external stimulation and be used as smart devices. In this study, we have fabricated a series of bistable cholesteric liquid crystal devices using dual frequency nematic liquid crystal HEF951 and a synthesized chiral ferroelectric liquid crystal 3C by photo-polymerization.
Dual frequency nematic liquid crystal offers a new way to operate these bistable liquid crystal devices through high or low frequency alternative electric field at driving voltage. Chiral ferroelectric liquid crystal 3C was used for the inducing of nematic liquid crystal forming cholesteric liquid crystal phase and decreasing the driving voltage and response time of the fabricated bistable liquid crystal devices. Formation of polymer network via the assistance of ferroelectric LC in these bistable liquid crystal devices, the response time was significantly decreased.
The fabricated bistable liquid crystal devices show stable opaque focal conic state and stable transparent planar state without any energy consumption. For 1BC cell, after driving with 66 V, the cell shows 78.33% and 9.39% transmittance for planar state and focal conic states, respectively. Switching of the bistable liquid crystal cells from one state to another state was achieved by one-step voltage bias with various frequencies. Furthermore, the response time of 1BC cell was calculated as 2.3 ms. The result suggests that the fabricated bistable liquid crystal devices are good enough to be applied in liquid crystal displays and other related smart devices.
論文目次 Abstract I
中文摘要 III
致謝 IV
Contents V
List of Schemes VIII
List of Tables IX
List of Figures X
1. Introduction 1
1-1 Preface 1
1-2 Research Motivation 3
2. Literature Review 4
2-1 Introduction of Liquid Crystals 4
2-2 Classification of liquid crystals 6
2-2-1 Thermotropic Liquid Crystals 7
2-2-1-1 Nematic Liquid Crystal Phase (NLC) 8
2-2-1-2 Smectic Liquid Crystal Phase (SmLC) 9
2-2-1-3 Cholesteric Liquid Crystal Phase (CLC) 11
2-2-1-4 Discotic Liquid Crystal Phase 16
2-2-2 Lyotropic Liquid Crystal (LLC) 17
2-3 Physical Properties of Liquid Crystals 18
2-3-1 Anisotropic Properties of Liquid Crystals 18
2-3-2 Birefringence of Liquid Crystals 19
2-3-3 Dielectric Properties of Liquid Crystals 20
2-3-4 Identification of Thermotropic Liquid Crystals 22
2-4 Dual Frequency Liquid Crystals (DFLC) 26
2-5 Ferroelectric Liquid Crystals (FLC) 29
2-6 Polymer Stabilized Cholesteric Liquid Crystals (PSCLC) 32
2-7 Bistable Liquid Crystal Grating Devices 35
3. Experimental section 40
3-1 Materials 40
3-2 Instruments 42
3-3 Experimental Process 43
3-3-1 Synthesis of Ferroelectric Liquid Crystal 3C 43
3-3-2 Synthesis of Bifunctional Crosslinker BAHB 46
3-3-3 Fabrication of Cholesteric Liquid Crystal Cells 47
3-4 Measurement of Electro-optical Properties 51
4. Results and Discussion 53
4-1 Characterization of the Synthesized Compounds 53
4-1-1 Structure Identification 53
4-1-2 Thermal Properties Analysis 57
4-1-3 Optical Properties Analysis 59
4-1-4 Ferroelectric Properties Analysis 61
4-2 Characterization of DFCLC Cells 63
4-2-1 Preparation of DFCLC Mixtures 63
4-2-2 Thermal Properties of DFCLC Cells 64
4-2-3 Optical Properties of DFCLC Cells 65
4-2-4 Electro-optical Properties of DFCLC Cells 69
4-3 Characterization of Polymer Stabilized DFCLC Cells 78
4-3-1 Components of PSDFCLC Mixtures 78
4-3-2 Thermal Properties of PSDFCLC Cells 79
4-3-3 Optical Properties of PSDFCLC Cells 80
4-3-4 Electro-optical Properties of PSDFCLC Cells 87
5. Conclusions 99
6. References 100
參考文獻 1. Shim, Hyunseok, Hong-Kun Lyu, Bunyod Allabergenov, Yuriy Garbovskiy, Anatoliy Glushchenko, and Byeongdae Choi, Enhancement of frequency modulation response time for polymer-dispersed liquid crystal. Liquid Crystals, 2016. 43(10): p. 1390-1396.
2. Reinitzer, Friedrich, Contributions to the knowledge of cholesterol. Liquid Crystals, 1989. 5(1): p. 7-18.
3. Lehmann, O, Plastische, fließende und flüssige Kristalle; erzwungene und spontane Homöotropie derselben. Annalen der Physik, 1903. 317(10): p. 311-341.
4. Lehmann, Otto, Zur geschichte der flüssigen kristalle. Annalen der Physik, 1908. 330(5): p. 852-860.
5. Lehmann, Otto, Die neue welt der flüssigen kristalle und deren bedeutung für physik, chemie, technik und biologie. 1911: Akademische verlagsgesellschaft mbh.
6. Tschierske, Carsten, Fluorinated liquid crystals: design of soft nanostructures and increased complexity of self-assembly by perfluorinated segments, in Liquid Crystals. 2011, Springer. p. 1-108.
7. Brown, Glenn, Liquid crystals and biological structures. 2012: Elsevier.
8. Kemiklioglu, Emine, From a Chiral Molecule to Blue Phases, in Liquid Crystals-Recent Advancements in Fundamental and Device Technologies. 2017, IntechOpen.
9. Brown, Glenn H, Structure, properties, and some applications of liquid crystals. JOSA, 1973. 63(12): p. 1505-1514.
10. Brown, GH and JW Doane, Liquid crystals and some of their applications. Applied physics, 1974. 4(1): p. 1-15.
11. Ryabchun, Alexander and Alexey Bobrovsky, Cholesteric Liquid Crystal Materials for Tunable Diffractive Optics. Advanced Optical Materials, 2018. 6(15).
12. Zhang, Lan-Ying, Yan-Zi Gao, Ping Song, Xiao-Juan Wu, Xiao Yuan, Bao-Feng He, Xing-Wu Chen, Wang Hu, Ren-Wei Guo, Hang-Jun Ding, Jiu-Mei Xiao, and Huai Yang, Research progress of cholesteric liquid crystals with broadband reflection characteristics in application of intelligent optical modulation materials. Chinese Physics B, 2016. 25(9).
13. Schenning, Albert, Gregory P Crawford, and Dirk J Broer, Liquid crystal sensors. 2017: CRC Press.
14. Mulder, D. J., A. P. H. J. Schenning, and C. W. M. Bastiaansen, Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors. J. Mater. Chem. C, 2014. 2(33): p. 6695-6705.
15. Katsonis, Nathalie, Emmanuelle Lacaze, and Alberta Ferrarini, Controlling chirality with helix inversion in cholesteric liquid crystals. Journal of Materials Chemistry, 2012. 22(15).
16. Meyer, Robert B., Effects of Electric and Magnetic Fields on the Structure of Cholesteric Liquid Crystals. Applied Physics Letters, 1968. 12(9): p. 281-282.
17. Chanishvili, A., G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, Lasing in Dye-Doped Cholesteric Liquid Crystals: Two New Tuning Strategies. Advanced Materials, 2004. 16(910): p. 791-795.
18. Bailey, C. A., V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, Electromechanical tuning of cholesteric liquid crystals. Journal of Applied Physics, 2010. 107(1).
19. Xu, Ming, Fudong Xu, and Deng-Ke Yang, Effects of cell structure on the reflection of cholesteric liquid crystal displays. Journal of Applied Physics, 1998. 83(4): p. 1938-1944.
20. Brannum, Michelle T., Aubrey M. Steele, Maxwell C. Venetos, LaShanda T. J. Korley, Gary E. Wnek, and Timothy J. White, Light Control with Liquid Crystalline Elastomers. Advanced Optical Materials, 2019. 7(6).
21. Kim, Dae-Yoon, Kyung Min Lee, Timothy J. White, and Kwang-Un Jeong, Cholesteric liquid crystal paints: in situ photopolymerization of helicoidally stacked multilayer nanostructures for flexible broadband mirrors. NPG Asia Materials, 2018. 10(11): p. 1061-1068.
22. Lee, S. S., B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S. H. Kim, Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules. Adv Mater, 2015. 27(4): p. 627-633.
23. Wang, Chun-Ta and Tsung-Hsien Lin, Bistable reflective polarizer-free optical switch based on dye-doped cholesteric liquid crystal. Optical Materials Express, 2011. 1(8): p. 1457-1462.
24. Kumar, Tatipamula A, Khoa V Le, Satoshi Aya, Sungmin Kang, Fumito Araoka, Ken Ishikawa, Surajit Dhara, and Hideo Takezoe, Anchoring transition in a nematic liquid crystal doped with chiral agents. Phase Transitions, 2012. 85(10): p. 888-899.
25. Bushby, Richard J and Owen R Lozman, Discotic liquid crystals 25 years on. Current opinion in colloid & interface science, 2002. 7(5-6): p. 343-354.
26. Guo, Chenyu, Jun Wang, Fengliang Cao, Robert J. Lee, and Guangxi Zhai, Lyotropic liquid crystal systems in drug delivery. Drug Discovery Today, 2010. 15(23-24): p. 1032-1040.
27. Collings, Peter J and John W Goodby, Introduction to liquid crystals: chemistry and physics. 2019: Crc Press.
28. Kumar, Satyen, Liquid crystals: experimental study of physical properties and phase transitions. 2001: Cambridge University Press.
29. Stephen, Michael J and Joseph P Straley, Physics of liquid crystals. Reviews of Modern Physics, 1974. 46(4): p. 617.
30. Ghosh, Gorachand, Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Optics communications, 1999. 163(1-3): p. 95-102.
31. Wu, Shin-Tson, Uzi Efron, and LaVerne D Hess, Birefringence measurements of liquid crystals. Applied optics, 1984. 23(21): p. 3911-3915.
32. Scolari, Lara, Thomas Tanggaard Alkeskjold, Jesper Riishede, Anders Bjarklev, David Sparre Hermann, Martin Dybendal Nielsen, and Paolo Bassi, Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers. Optics Express, 2005. 13(19): p. 7483-7496.
33. Kumar, Pankaj, Shin-Woong Kang, and Seung Hee Lee, Advanced bistable cholesteric light shutter with dual frequency nematic liquid crystal. Optical Materials Express, 2012. 2(8): p. 1121-1134.
34. Barron, Andrew R, Physical methods in chemistry and nano science. 2015.
35. Dierking, Ingo, Textures of liquid crystals. 2003: John Wiley & Sons.
36. Xianyu, Haiqing, Shin-Tson Wu, and Chih-Lung Lin, Dual frequency liquid crystals: a review. Liquid Crystals, 2009. 36(6-7): p. 717-726.
37. Sinha, GP and FM Aliev, Dielectric spectroscopy of liquid crystals in smectic, nematic, and isotropic phases confined in random porous media. Physical Review E, 1998. 58(2): p. 2001.
38. Perkowski, P, K Ogrodnik, D Łada, W Piecek, J Rutkowska, Z Raszewski, M Żurowska, R Dąbrowski, and X Sun, Dielectric measurements of new antiferroelectric liquid crystals. Opto-Electronics Review, 2008. 16(3): p. 277-280.
39. Carlsson, Tomas, B Žekš, C Filipič, and A Levstik, Theoretical model of the frequency and temperature dependence of the complex dielectric constant of ferroelectric liquid crystals near the smectic-C*–smectic-A phase transition. Physical Review A, 1990. 42(2): p. 877.
40. Meyerhofer, Dietrich, Elastic and dielectric constants in mixtures of nematic liquid crystals. Journal of Applied Physics, 1975. 46(12): p. 5084-5087.
41. Wen, Chien-Hui and Shin-Tson Wu, Dielectric heating effects of dual-frequency liquid crystals. Applied Physics Letters, 2005. 86(23): p. 231104.
42. Xu, Ming and Deng-Ke Yang, Dual frequency cholesteric light shutters. Applied Physics Letters, 1997. 70(6): p. 720-722.
43. Skarp, K and MA Handschy, Ferroelectric liquid crystals. Material properties and applications. Molecular Crystals and Liquid Crystals, 1988. 165(1): p. 439-509.
44. Meyer, Robert B, L Liebert, L Strzelecki, and Patrick Keller, Ferroelectric liquid crystals. Journal de Physique Lettres, 1975. 36(3): p. 69-71.
45. Lagerwall, Sven T, Ferroelectric and antiferroelectric liquid crystals. Ferroelectrics, 2004. 301(1): p. 15-45.
46. Goodby, JW and TM Leslie, Ferroelectric liquid crystals-structure and design. Molecular Crystals and Liquid Crystals, 1984. 110(1-4): p. 175-203.
47. Ueda, H., T. Akita, Y. Uchida, and T. Kimura, Measuring Magnetically-Tuned Ferroelectric Polarization in Liquid Crystals. J Vis Exp, 2018(138).
48. Zhang, Yan-Song, Chun-Yen Liu, Alexander V. Emelyanenko, and Jui-Hsiang Liu, Synthesis of Predesigned Ferroelectric Liquid Crystals and Their Applications in Field-Sequential Color Displays. Advanced Functional Materials, 2018. 28(14).
49. Kim, Ki-Han, Byeong-Hun Yu, Sun-Wook Choi, Seung-Won Oh, and Tae-Hoon Yoon, Dual mode switching of cholesteric liquid crystal device with three-terminal electrode structure. Optics Express, 2012. 20(22): p. 24376-24381.
50. Pérez-Lombard, Luis, José Ortiz, and Christine Pout, A review on buildings energy consumption information. Energy and Buildings, 2008. 40(3): p. 394-398.
51. Ke, Yujie, Chengzhi Zhou, Yang Zhou, Shancheng Wang, Siew Hwa Chan, and Yi Long, Emerging Thermal-Responsive Materials and Integrated Techniques Targeting the Energy-Efficient Smart Window Application. Advanced Functional Materials, 2018. 28(22).
52. Kwon, Hyun-Keun, Kyu-Tae Lee, Kahyun Hur, Sung Hwan Moon, Malik M. Quasim, Timothy D. Wilkinson, Ji-Young Han, Hyungduk Ko, Il-Ki Han, Byoungnam Park, Byoung Koun Min, Byeong-Kwon Ju, Stephen M. Morris, Richard H. Friend, and Doo-Hyun Ko, Optically Switchable Smart Windows with Integrated Photovoltaic Devices. Advanced Energy Materials, 2015. 5(3).
53. Lan, Zhaojue, Yong Li, Haitao Dai, and Dan Luo, Bistable Smart Window Based on Ionic Liquid Doped Cholesteric Liquid Crystal. IEEE Photonics Journal, 2017. 9(1): p. 1-7.
54. Timmermans, Gilles H, Bartholomeus WH Saes, and Michael G Debije, Dual-responsive “smart” window and visually attractive coating based on a diarylethene photochromic dye. Applied optics, 2019. 58(36): p. 9823-9828.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-06-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-06-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw