進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1007202010142800
論文名稱(中文) 仿生光/熱可調控液晶彈性體致動器的研究
論文名稱(英文) Study on Biomimetic Photo/Thermal Tunable Liquid Crystalline Elastomeric Actuators
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 歐憬憲
研究生(英文) Ching-Hsien Ou
學號 N36074097
學位類別 碩士
語文別 英文
論文頁數 90頁
口試委員 指導教授-劉瑞祥
口試委員-劉俊彥
口試委員-吳逸謨
口試委員-陳澄河
口試委員-許聯崇
中文關鍵字 液晶彈性體  致動器  仿生的  麥克爾加成反應  聚多巴胺 
英文關鍵字 Liquid crystal elastomer  Actuator  Biomimetic  Michael addition  Polydopamine 
學科別分類
中文摘要 近年來,由於致動器和機器人技術的飛速發展,人們對具有不同且複雜的形狀變化的新型軟性材料進行了深入研究,例如螺旋捲曲,自體共振,折疊以及其他三維形狀變形。在本項研究中,透過麥克爾加成反應製備了一系列液晶彈性體致動器。藉由調控官能基間的摩爾比,使丙烯酸酯過量得以進行二次交聯反應。我們使用市售液晶RM257作為高分子主鏈,並且加入所合成的雙官能性基單體BAHB來調整液晶彈性體機械強度。利用軸向拉伸來達成單軸配向,並以偏光顯微鏡(POM)證實異方性材料的光學特性。由於液晶元在聚合物網絡中的單軸排列,所製成的薄膜可以進行一系列可逆形狀變化,例如螺旋捲曲,伸長和收縮,這種現象歸因於熱觸發的液晶分子秩序度所致。最後,我們設計了類似毛毛蟲形狀的液晶彈性體膜,並將其浸入聚多巴胺溶液中來製備聚多巴胺塗層膜。利用聚多巴胺對紅外光的光熱效應,彈性體膜可以有效地將光能和熱能轉換為機械能,並顯現出光熱致動行為。所合成的光、熱敏膜,未來在仿生裝置和微型機器人系統中將可以表現出許多潛在的應用。
英文摘要 Recently, due to the rapid progress in soft actuator and robotics, novel soft materials with different and complex shape change, such as helical curling, self-oscillation, folding, and other three-dimensional shape morphing were highly investigated. In this research, a series of photo/thermal tunable liquid crystalline actuators was fabricated via thiol-acrylate Michael addition. The molar ratio between acrylate and thiol functional groups was controlled to ensure acrylate groups are excessive for the second crosslinking reaction. To synthesize elastomeric polymers showing liquid crystal phases, RM257 was used as a main chain liquid crystalline monomer. A synthesized monomer 4,4’-bis(6-(acryloyloxy)hexyloxy) biphenyl (BAHB) was used to adjust the mechanical strength. After polymerization, the monodomain aligned film was achieved by uniaxial stretching and the anisotropic properties of the polymer film were confirmed by polarized optical microscope (POM). The fabricated liquid crystal elastomeric film shows a series of reversible shape changing, such as helical curling, elongation, and contraction. This phenomenon is ascribed to the change of molecular orientation triggered by temperature. Finally, a caterpillar-like liquid crystal elastomer (LCE) was fabricated. To enhance the photo sensitivity, the film was soaked in the polydopamine (PDA) solution for overnight. With the photo-thermal effect of the polydopamine on infrared light, the prepared LCE film shows caterpillar-like moving. The results suggest that the synthesized LCE actuator can effectively transfer the photo and thermal energy into mechanical power resulting in the caterpillar-like moving. The synthesized photo and thermal sensitive films are expected to show lots of potential applications in biomimetic devices and micro robotic system.
論文目次 Abstract I
中文摘要 III
致謝 V
Contents VI
List of Schemes IX
List of Tables X
List of Figures XI
1. Introduction 1
1-1 Preface 1
1-2 Research Motivation 2
2. Literature Review 3
2-1 Introduction of Liquid Crystals 3
2-1-1 Historical Overview 3
2-1-2 Mesogenic Molecules and Orientational Order 5
2-2 Classification of Liquid Crystals 9
2-2-1 Thermotropic Liquid Crystal 10
2-2-1-1 Nematic Liquid Crystal Phase 10
2-2-1-2 Smectic Liquid Crystals Phase 12
2-2-1-3 Cholesteric Liquid Crystal Phase 14
2-2-2 Lyotropic Liquid Crystal 16
2-3 Introduction of Michael Addition Reactions[16-19] 17
2-3-1 The Mechanism of the Carbon Michael Addition[16] 18
2-3-2 Heteroatomic Donors in the Michael Reaction 19
2-3-2-1 The Aza-Michael Reaction 19
2-3-2-2 Thiols as Michael Donors[16] 20
2-4 Introduction of Photopolymerization Reaction 22
2-5 Introduction of Liquid Crystalline Polymeric Materials[28] 23
2-5-1 Liquid Crystal Elastomers (LCEs) 25
2-5-1-1 Polydomain-Monodomain Transition in Nematic Elastomers 26
2-5-1-2 Thermal Induced Actuation of LCEs 27
2-5-1-3 Photo Induced Actuation of LCEs 31
2-6 Introduction of Polydopamine Coated Application 34
2-6-1 Polydopamine Application in LC Actuators 35
3. Experimental Section 39
3-1 Materials 39
3-2 Instruments 40
3-3 Experimental Process 41
3-3-1 Synthesis of Bifunctional Monomer BAHB 41
3-3-2 Fabrication of Liquid Crystal Elastomers 43
3-3-2-1 Preparation of Liquid Crystal Mixture 43
3-3-2-2 Fabrication of Polydomain Liquid Crystal Elastomers (LCEs) 44
3-3-3 Dynamic Mechanical Analysis of LCEs 46
3-3-4 Small and Wide-Angle X-Ray Scattering of LCEs 47
3-3-5 Design and Fabrication of Monodomain LCE 48
3-3-6 Fabrication of Near-IR Tunable LCE 49
4. Results and Discussion 51
4-1 Characterization of the Synthesized Compounds 51
4-1-1 Structure Identification of BAHB 51
4-1-2 Thermal Properties of BAHB 53
4-1-3 Optical Properties of BAHB 55
4-2 Characterization of the Synthesized LCEs 56
4-2-1 Structure Identification 56
4-2-2 Thermal Properties of the Synthesized LCEs 58
4-2-3 Dynamic Mechanical Properties of the Synthesized LCEs 64
4-2-4 Optical Properties of LCE with 15 mol% of BAHB 70
4-2-5 Small and Wide-Angle X-Ray Scattering of the LCE film 71
4-2-6 Optical Properties of Uniaxial Aligned LCE Film 73
4-3 Thermal Actuation Properties of Monodomain LCE 74
4-3-1 Schematic Illustration of Thermal Tunable LCE 74
4-3-2 Thermal Shape-Switching Behaviors 75
4-3-3 Thermal Actuation Test with a Constant Stress 76
4-4 Characterization of LCE actuator 78
4-4-1 Mechanism of Thermal Response Deformation 78
4-4-2 Thermal Actuation of the Programmed LC Actuator 79
4-4-3 Biomimetic Caterpillar-like Actuator 81
5. Conclusions 83
6. References 84
參考文獻 [1] F. Reinitzer, "Beiträge zur kenntniss des cholesterins," Monatshefte für Chemie, vol. 9, no. 1, pp. 421-441, 1888.
[2] R. H. Chen, Liquid crystal displays: fundamental physics and technology. John Wiley & Sons, 2011.
[3] B. Hogan, E. Kovalska, M. Craciun, and A. Baldycheva, "2D material liquid crystals for optoelectronics and photonics," Journal of Materials Chemistry C, vol. 5, no. 43, pp. 11185-11195, 2017.
[4] V. P. Shibaev and A. Y. Bobrovsky, "Liquid crystalline polymers: development trends and photocontrollable materials," Russ. Chem. Rev, vol. 86, no. 11, pp. 1024-1072, 2017.
[5] L. Onsager, "The effects of shape on the interaction of colloidal particles," Annals of the New York Academy of Sciences, vol. 51, no. 4, pp. 627-659, 1949.
[6] I. Dierking and S. Al-Zangana, "Lyotropic liquid crystal phases from anisotropic nanomaterials," Nanomaterials, vol. 7, no. 10, p. 305, 2017.
[7] P. H. Kouwer, W. J. Mijs, W. F. Jager, and S. J. Picken, "Modeling of ND and NCol phase transitions in discotic side chain polymers by the extended McMillan theory," Journal of the American Chemical Society, vol. 123, no. 19, pp. 4645-4646, 2001.
[8] G. H. Brown, "Structure, properties, and some applications of liquid crystals," JOSA, vol. 63, no. 12, pp. 1505-1514, 1973.
[9] I. Dierking, Textures of liquid crystals. John Wiley & Sons, 2003.
[10] W. G. Eds. H. Baumgärtel, F. Hensel—guest editor: R. Zellner, "Topics in Physical Chemistry, vol. 6," 1999.
[11] J. W. Goodby, "Materials and Phase Structures of Calamitic and Discotic Liquid Crystals," in Handbook of Visual Display Technology, 2016, pp. 1845-1895.
[12] J. P. Abberley, R. Killah, R. Walker, J. M. Storey, C. T. Imrie, M. Salamończyk, C. Zhu, E. Gorecka, and D. Pociecha, "Heliconical smectic phases formed by achiral molecules," Nature communications, vol. 9, no. 1, pp. 1-7, 2018.
[13] T. Govindaiah, "Electro-optical and thermodynamic studies on induced reentrant smectic-a phase in binary mixture of liquid crystalline materials Chem. Technol," Ind. J, vol. 11, p. 106, 2016.
[14] M. Mathews, R. S. Zola, D.-k. Yang, and Q. Li, "Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bent-core liquid crystals," Journal of Materials Chemistry, vol. 21, no. 7, pp. 2098-2103, 2011.
[15] T. Hegmann, H. Qi, and V. M. Marx, "Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications," Journal of Inorganic and Organometallic Polymers and Materials, vol. 17, no. 3, pp. 483-508, 2007.
[16] B. D. Mather, K. Viswanathan, K. M. Miller, and T. E. Long, "Michael addition reactions in macromolecular design for emerging technologies," Progress in Polymer Science, vol. 31, no. 5, pp. 487-531, 2006.
[17] D. P. Nair, M. Podgorski, S. Chatani, T. Gong, W. Xi, C. R. Fenoli, and C. N. Bowman, "The thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry," Chemistry of Materials, vol. 26, no. 1, pp. 724-744, 2014.
[18] C. F. Nising and S. Braese, "The oxa-Michael reaction: from recent developments to applications in natural product synthesis," Chemical Society Reviews, vol. 37, no. 6, pp. 1218-1228, 2008.
[19] J. L. Vicario, D. Badia, and L. Carrillo, "Organocatalytic enantioselective Michael and hetero-Michael reactions," Synthesis, vol. 2007, no. 14, pp. 2065-2092, 2007.
[20] G. B. Desmet, M. K. Sabbe, D. R. D'hooge, P. Espeel, S. Celasun, G. B. Marin, F. E. Du Prez, and M.-F. Reyniers, "Thiol-Michael addition in polar aprotic solvents: nucleophilic initiation or base catalysis?," Polymer Chemistry, vol. 8, no. 8, pp. 1341-1352, 2017.
[21] N. F. Albertson, "Alkylation with non-ketonic Mannich bases. Aminothiazoles and pyrrole," Journal of the American Chemical Society, vol. 70, no. 2, pp. 669-670, 1948.
[22] A. B. Lowe, "Thiol-ene “click” reactions and recent applications in polymer and materials synthesis," Polymer Chemistry, vol. 1, no. 1, pp. 17-36, 2010.
[23] N. Arsu, I. Reetz, Y. Yagci, and M. K. Mishra, Photoinitiated radical vinyl polymerization. CRC Press Taylor & Francis Group: New York, 2009.
[24] Y. Yağci and I. Reetz, "Externally stimulated initiator systems for cationic polymerization," Progress in Polymer Science, vol. 23, no. 8, pp. 1485-1538, 1998.
[25] C. Kutal, P. A. Grutsch, and D. B. Yang, "A novel strategy for photoinitiated anionic polymerization," Macromolecules, vol. 24, no. 26, pp. 6872-6873, 1991.
[26] Y. Yagci, S. Jockusch, and N. J. Turro, "Photoinitiated polymerization: advances, challenges, and opportunities," Macromolecules, vol. 43, no. 15, pp. 6245-6260, 2010.
[27] J.-P. Fouassier and J. Lalevée, Photoinitiators for polymer synthesis: scope, reactivity, and efficiency. John Wiley & Sons, 2012.
[28] T. J. White and D. J. Broer, "Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers," Nature materials, vol. 14, no. 11, pp. 1087-1098, 2015.
[29] W. Kaufhold, H. Finkelmann, and H. R. Brand, "Nematic elastomers, 1. Effect of the spacer length on the mechanical coupling between network anisotropy and nematic order," Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, vol. 192, no. 11, pp. 2555-2579, 1991.
[30] M. Warner and E. M. Terentjev, Liquid crystal elastomers. Oxford university press, 2007.
[31] S. Fridrikh and E. Terentjev, "Polydomain-monodomain transition in nematic elastomers," Physical Review E, vol. 60, no. 2, p. 1847, 1999.
[32] D. Demus, J. W. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, "Handbook of liquid crystals, handbook of liquid crystals: four volume set," Handbook of Liquid Crystals, Handbook of Liquid Crystals: Four Volume Set, by Dietrich Demus (Editor), John W. Goodby (Editor), George W. Gray (Editor), Hans W. Spiess (Editor), Volkmar Vill (Editor), pp. 2180. ISBN 3-527-29502-X. Wiley-VCH, June 1998., p. 2180, 1998.
[33] P.-G. de Gennes, "A semi-fast artificial muscle," Comptes Rendus de l'Academie des Sciences Series IIB Mechanics Physics Chemistry Astronomy, vol. 5, no. 324, pp. 343-348, 1997.
[34] P. G. De Gennes, M. Hébert, and R. Kant, "Artificial muscles based on nematic gels," in Macromolecular Symposia, 1997, vol. 113, no. 1: Wiley Online Library, pp. 39-49.
[35] M. O. Saed, C. P. Ambulo, H. Kim, R. De, V. Raval, K. Searles, D. A. Siddiqui, J. M. O. Cue, M. C. Stefan, and M. R. Shankar, "Molecularly‐Engineered, 4D‐Printed Liquid Crystal Elastomer Actuators," Advanced Functional Materials, vol. 29, no. 3, p. 1806412, 2019.
[36] L. Yu, H. Shahsavan, G. Rivers, C. Zhang, P. Si, and B. Zhao, "Programmable 3D shape changes in liquid crystal polymer networks of uniaxial orientation," Advanced Functional Materials, vol. 28, no. 37, p. 1802809, 2018.
[37] R. Yang and Y. Zhao, "Non‐uniform optical inscription of actuation domains in a liquid crystal polymer of uniaxial orientation: an approach to complex and programmable shape changes," Angewandte Chemie International Edition, vol. 56, no. 45, pp. 14202-14206, 2017.
[38] H. Tian, Z. Wang, Y. Chen, J. Shao, T. Gao, and S. Cai, "Polydopamine-coated main-chain liquid crystal elastomer as optically driven artificial muscle," ACS applied materials & interfaces, vol. 10, no. 9, pp. 8307-8316, 2018.
[39] R. R. Kohlmeyer and J. Chen, "Wavelength‐selective, IR light‐driven hinges based on liquid crystalline elastomer composites," Angewandte Chemie International Edition, vol. 52, no. 35, pp. 9234-9237, 2013.
[40] Y. Yue, Y. Norikane, R. Azumi, and E. Koyama, "Light-induced mechanical response in crosslinked liquid-crystalline polymers with photoswitchable glass transition temperatures," Nature communications, vol. 9, no. 1, pp. 1-8, 2018.
[41] L. Yu, Z. Cheng, Z. Dong, Y. Zhang, and H. Yu, "Photomechanical response of polymer-dispersed liquid crystals/graphene oxide nanocomposites," Journal of Materials Chemistry C, vol. 2, no. 40, pp. 8501-8506, 2014.
[42] M. Wang, Y. Han, L.-X. Guo, B.-P. Lin, and H. Yang, "Photocontrol of helix handedness in curled liquid crystal elastomers," Liquid Crystals, vol. 46, no. 8, pp. 1231-1240, 2018.
[43] B. Zuo, M. Wang, B.-P. Lin, and H. Yang, "Photomodulated Tricolor-Changing Artificial Flowers," Chemistry of Materials, vol. 30, no. 21, pp. 8079-8088, 2018.
[44] H. Lee, S. M. Dellatore, W. M. Miller, and P. B. Messersmith, "Mussel-inspired surface chemistry for multifunctional coatings," science, vol. 318, no. 5849, pp. 426-430, 2007.
[45] Z. Li, X. Zhang, S. Wang, Y. Yang, B. Qin, K. Wang, T. Xie, Y. Wei, and Y. Ji, "Polydopamine coated shape memory polymer: enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization," Chemical science, vol. 7, no. 7, pp. 4741-4747, 2016.
[46] Q. Liu, N. Wang, J. r. Caro, and A. Huang, "Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes," Journal of the American Chemical Society, vol. 135, no. 47, pp. 17679-17682, 2013.
[47] Y. Liu, K. Ai, J. Liu, M. Deng, Y. He, and L. Lu, "Dopamine‐melanin colloidal nanospheres: an efficient near‐infrared photothermal therapeutic agent for in vivo cancer therapy," Advanced materials, vol. 25, no. 9, pp. 1353-1359, 2013.
[48] Y. S. Zhang, A. Emelyanenko, and J. H. Liu, "Fabrication and optical characterization of imprinted broad‐band photonic films via multiple gradient UV photopolymerization," Journal of Polymer Science Part B: Polymer Physics, vol. 55, no. 19, pp. 1427-1435, 2017.
[49] M. O. Saed, A. H. Torbati, D. P. Nair, and C. M. Yakacki, "Synthesis of programmable main-chain liquid-crystalline elastomers using a two-stage thiol-acrylate reaction," JoVE (Journal of Visualized Experiments), no. 107, p. e53546, 2016.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-06-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-06-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw