進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1007201817150300
論文名稱(中文) 鈣摻雜鈦酸鋇之晶體結構、微結構及電性之研究
論文名稱(英文) Study on the crystal structure, microstructure, and electrical properties of calcium doped barium titanate
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 陳琮皓
研究生(英文) Tsung-Hao Chen
學號 N46051198
學位類別 碩士
語文別 中文
論文頁數 75頁
口試委員 指導教授-向性一
口試委員-許志雄
口試委員-曾俊儒
中文關鍵字 鈦酸鋇  鈣摻雜  核殼結構  介電性質  阻抗分析 
英文關鍵字 BaTiO3  Ca doped  core-shell structure  dielectric  impedance spectroscopy 
學科別分類
中文摘要 本研究以商用鈣摻雜鈦酸鋇(BCT)為主體,研究不同含量之鈣摻雜以及額外0.5 atomic% 鏑(Dy3+)摻雜對BCT微結構、晶體結構和其電性質之影響。實驗結果發現,所有配方以BME爐於還原氣氛下燒結後,平均晶粒大小皆為280~300nm,沒有明顯差異,亦無二次相之生成。以Rietveld法分析晶格常數,根據結果推論BCT中的Ca主要進入A-site部分取代Ba,而摻雜之Dy會進入B-site作為受體。在TEM影像中可以發現,摻雜Dy後晶粒會有核殼結構的樣貌,其中核區為有層狀的晶域壁區域,發現Dy主要出現在較靠近晶界處,擴散進入晶粒內部,形成核殼結構。分析其介電性質可以得知,鈣含量越高,居里溫度會往高溫移動,介電常數也會越高;摻雜Dy後,也因核殼結構產生之內應力,使居里溫度大於未摻雜之樣品,介電常數也因此而提升,但在較高溫下介電常數變化率也較大。由阻抗分析的結果得知,不同比例之鈣摻雜鈦酸鋇樣品在導電率方面沒有太大差異,主要因鈣摻雜主要為取代A-site的等價取代,氧空缺濃度並無明顯差異;(Ba1-xCax)TiO3組成中,Ca2+取代Ba2+可顯著增大晶粒內部之導電活化能,使其高溫導電行為由V_O^(••) 主導改由V_Ba^' 主導,顯示Ca2+摻雜可有效抑制氧空缺之生成。分析其空乏層厚度與晶界能障高度得知,因載子濃度皆相同,無法表現其差異性。
英文摘要 In this study, commercial calcium-doped barium titanate (BCT) powders were used as the raw materials to study different amounts of calcium doping effects on the microstructure, crystal structure, and electrical properties. The experimental results showed that all samples can be densified in a reducing atmosphere and the average grain sizes were about 280-300 nm with no significant difference. No secondary phase was observed in the samples. Based on the Rietveld analysis results, Ca in the BCT mainly entered A-site to replace Ba, and the doped Dy entered B-site as the acceptor. For the BCT doped with Dy3+, the grains exhibited core-shell structure, and the laminar domains were observed in the core region. It may be due to the doped Dy3+ initially located near the grain boundaries and then diffused into the grains during sintering to form the core-shell structure. The Curie temperature and dielectric constant increased with increasing CaO content. The Curie temperature was shifted to a higher temperature by doping Dy3+ due to the internal stress generated by the core-shell structure. No significant difference in the conductivity was observed for the BCT with different CaO content. In comparison of other compositions reported in the literatures, the substitution of Ca2+ for Ba2+ can significantly increase the conductivity activation energy of grain because the conductivity at high temperature was dominated by V_Ba^' rather than V_O^(••). It suggests that Ca2+ doping can effectively inhibit the formation of oxygen vacancy. No significant depletion layer thickness and the height of the grain boundary energy barrier were found because the carrier concentrations were the same for BCT doped with same Dy content.
論文目次 摘要 I
誌謝 X
目錄 XII
圖目錄 XIV
表目錄 XVII
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 鈦酸鋇之晶體與結構 3
2-2 鋇鈦比對鈦酸鋇之影響 6
2-3鈦酸鋇陶瓷之介電-溫度性質之影響 9
2-3-1 正方性對介電-溫度曲線之影響 9
2-3-2內應力對介電-溫度曲線之影響 9
2-3-3添加物對介電-溫度曲線之影響 10
2-3-4密度對介電-溫度曲線之影響 11
2-3-5晶粒大小對介電-溫度曲線之影響 13
2-4 添加物對鈦酸鋇性質的影響 15
2-4-1等價離子添加對居里溫度的偏移及介電性質之影響 15
2-4-2 施體(donor)的添加對鈦酸鋇性質之影響 18
2-4-3 受體(acceptor)的添加對鈦酸鋇性質之影響 18
2-4-4 補償性體(compensator)的添加對鈦酸鋇性質之影響 19
2-5 鈣摻雜對鈦酸鋇 20
2-6 阻抗分析法[40, 41] 23
2-7 電模數分析 31
2-8 常相位角元件 33
2-9 鈦酸鋇絕緣電阻之退化 34
第三章 實驗方法及步驟 37
3-1實驗藥品 37
3-2實驗流程 38
3-3樣品特性分析 40
3-3-1 粉末成分分析 (XRF) 40
3-3-2 粉末結晶相鑑定 (XRD) 40
3-3-3燒結收縮分析 41
3-3-4密度量測 41
3-3-5微結構觀察 41
3-3-6 介電性質分析 42
3-3-7 阻抗分析 42
第四章 結果與討論 43
4-1 起始粉末鑑定 43
4-2 燒結體分析 45
4-3晶體結構鑑定 48
4-4 微結構分析 52
4-5電性分析 56
4-5-1介電性質分析 56
4-5-2阻抗分析 59
4-5-3 Curie-Weiss 行為分析 62
4-5-4 導電率行為分析 64
4-5-5 空乏層(空間電荷層) 66
4-5-6 晶界能障高度 68
第五章 結論 70
參考文獻 71

參考文獻 [1] J. Han, P. Mantas, and A. Senos, "Defect chemistry and electrical characteristics of undoped and Mn-doped ZnO," Journal of the European Ceramic Society, vol. 22, no. 1, pp. 49-59, 2002.
[2] Y. Sakabe, K. Minai, and K. Wakino, "High-dielectric constant ceramics for base metal monolithic capacitors," Japanese Journal of Applied Physics, vol. 20, no. S4, p. 147, 1981.
[3] 王森, 紀箴, 張躍, and 周成, "MLCC 用高介電常數陶瓷介質材料的研究現狀及發展趨勢," 材料與冶金學報, vol. 2, no. 3, pp. 227-231, 2003.
[4] B. Jaffee, W. R. Cook, and H. Jaffee, Piezoelectric ceramics. N.Y.: Academic Press, 1971.
[5] C. Kuper, R. Pankrath, and H. Hesse, "Growth and dielectric properties of congruently melting Ba1-xCaxTiO3 crystals," Applied Physics A, vol. 65, no. 3, pp. 301-305, 1997.
[6] T. Mitsui and W. B. Westphal, "Dielectric and X-Ray Studies of Ca x Ba1− xTiO3 and CaxSr1− xTiO3," Physical Review, vol. 124, no. 5, p. 1354, 1961.
[7] Y. Sakabe, N. Wada, T. Hiramatsu, and T. Tonogaki, "Dielectric properties of fine-grained BaTiO3 ceramics doped with CaO," Japanese journal of applied physics, vol. 41, no. 11S, p. 6922, 2002.
[8] D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics (Dielectric Properties). N.Y: J. Wiley, 1976.
[9] D. Rase and R. Roy, "Phase equilibria in the system BaO–TiO2," Journal of the American Ceramic Society, vol. 38, no. 3, pp. 102-113, 1955.
[10] R. Sharma, N. H. CHAN, and D. Smyth, "Solubility of TiO2 in BaTiO3," Journal of the American Ceramic Society, vol. 64, no. 8, pp. 448-451, 1981.
[11] Y. Hu, M. P. Harmer, and D. M. Smyth, "Solubility of BaO in BaTiO3," Journal of the American Ceramic Society, vol. 68, no. 7, pp. 372-376, 1985.
[12] S. Lee, C. A. Randall, and Z. K. Liu, "Modified phase diagram for the barium oxide–titanium dioxide system for the ferroelectric barium titanate," Journal of the American Ceramic Society, vol. 90, no. 8, pp. 2589-2594, 2007.
[13] A. Maurice and R. Buchanan, "Preparation and stoichiometry effects on microstructure and properties of high purity BaTiO3," Ferroelectrics, vol. 74, no. 1, pp. 61-75, 1987.
[14] A. Beauger, J. Mutin, and J. Niepce, "Role and behaviour of orthotitanate Ba2TiO4 during the processing of BaTiO3 based ferroelectric ceramics," Journal of materials science, vol. 19, no. 1, pp. 195-201, 1984.
[15] J. K. Lee, K. S. Hong, and J. W. Jang, "Roles of Ba/Ti ratios in the dielectric properties of BaTiO3 ceramics," Journal of the American Ceramic Society, vol. 84, no. 9, 2001.
[16] Y. H. Song and Y. H. Han, "Effects of rare-earth oxides on temperature stability of acceptor-doped BaTiO3," Japanese journal of applied physics, vol. 44, no. 8R, p. 6143, 2005.
[17] T. R. Armstrong, L. E. Morgens, A. K. Maurice, and R. C. Buchanan, "Effects of zirconia on microstructure and dielectric properties of barium titanate ceramics," Journal of the American Ceramic Society, vol. 72, no. 4, pp. 605-611, 1989.
[18] B. Tang, S. Zhang, Y. Yuan, X. Zhou, and Y. Liang, "Influence of CaZrO 3 on dielectric properties and microstructures of BaTiO3-based X8R ceramics," Science in China Series E: Technological Sciences, vol. 51, no. 9, pp. 1451-1456, 2008.
[19] W. Buessem, L. Cross, and A. Goswami, "Phenomenological Theory of High Permittivity in Fine‐Grained Barium Titanate," Journal of the American Ceramic Society, vol. 49, no. 1, pp. 33-36, 1966.
[20] K. Kobayashi, J. Nishikawa, T. Suzuki, and Y. Mizuno, "Microstructure Study of BaTiO3–Ho2O3–MgO–SiO2-Based Ceramics Using Convergent Beam Electron Diffraction Analysis," Japanese Journal of Applied Physics, vol. 48, no. 9S1, p. 09KC05, 2009.
[21] J. Nishikawa, T. Hagiwara, K. Kobayashi, Y. Mizuno, and H. Kishi, "Effects of microstructure on the Curie temperature in BaTiO3–Ho2O3–MgO–SiO2 system," Japanese Journal of Applied Physics, vol. 46, no. 10S, p. 6999, 2007.
[22] Q. Feng and C. J. McConville, "Weak‐Beam Dark‐Field Microscopy of Complex Stress States in X7R‐Type BaTiO3 Dielectric Core–Shell Structures," Journal of the American Ceramic Society, vol. 87, no. 10, pp. 1945-1951, 2004.
[23] M. Frey and D. Payne, "Grain-size effect on structure and phase transformations for barium titanate," Physical Review B, vol. 54, no. 5, p. 3158, 1996.
[24] G. Arlt, D. Hennings, and G. De With, "Dielectric properties of fine‐grained barium titanate ceramics," Journal of applied physics, vol. 58, no. 4, pp. 1619-1625, 1985.
[25] D. Hennings, A. Schnell, and G. Simon, "Diffuse Ferroelectric Phase Transitions in Ba (Ti1‐yZry) O3 Ceramics," Journal of the American Ceramic Society, vol. 65, no. 11, pp. 539-544, 1982.
[26] R. E. Eitel, C. A. Randall, T. R. Shrout, P. W. Rehrig, W. Hackenberger, and S.-E. Park, "New high temperature morphotropic phase boundary piezoelectrics based on Bi (Me) O3–PbTiO3 ceramics," Japanese Journal of Applied Physics, vol. 40, no. 10R, p. 5999, 2001.
[27] T. T. Fang, H. L. Hsieh, and F. S. Shiau, "Effects of Pore Morphology and Grain Size on the Dielectric Properties and Tetragonal–Cubic Phase Transition of High‐Purity Barium Titanate," Journal of the American Ceramic Society, vol. 76, no. 5, pp. 1205-1211, 1993.
[28] J. Lin and T. Wu, "Effects of isovalent substitutions on lattice softening and transition character of BaTiO3 solid solutions," Journal of applied physics, vol. 68, no. 3, pp. 985-993, 1990.
[29] H. Ihrig, "The phase stability of BaTiO3 as a function of doped 3d elements: an experimental study," Journal of Physics C: Solid State Physics, vol. 11, no. 4, p. 819, 1978.
[30] J. H. Hwang and Y. H. Han, "Electrical Properties of Cerium‐Doped BaTiO3," Journal of the American Ceramic Society, vol. 84, no. 8, pp. 1750-1754, 2001.
[31] S. Sato, Y. Nakano, A. Sato, and T. Nomura, "Effect of Y-doping on resistance degradation of multilayer ceramic capacitors with Ni electrodes under the highly accelerated life test," Japanese journal of applied physics, vol. 36, no. 9S, p. 6016, 1997.
[32] S. Desu and E. Subbarao, "Effect of oxidation states of Mn on the phase stability of Mn-doped BaTiO3," Ferroelectrics, vol. 37, no. 1, pp. 665-668, 1981.
[33] D. F. Hennings, "Dielectric materials for sintering in reducing atmospheres," Journal of the european ceramic society, vol. 21, no. 10-11, pp. 1637-1642, 2001.
[34] L. A. Xue, Y. Chen, and R. J. Brook, "The influence of ionic radii on the incorporation of trivalent dopants into BaTiO3," Materials Science and Engineering: B, vol. 1, no. 2, pp. 193-201, 1988.
[35] H. Kishi et al., "Effect of occupational sites of rare-earth elements on the microstructure in BaTiO3," Japanese journal of applied physics, vol. 38, no. 9S, p. 5452, 1999.
[36] Y. H. Han, J. B. Appleby, and D. M. Smyth, "Calcium as an acceptor impurity in BaTiO3," Journal of the American Ceramic Society, vol. 70, no. 2, pp. 96-100, 1987.
[37] J. Park, T. Oh, and Y. Kim, "Dielectric properties and microstructural behaviour of B-site calcium-doped barium titanate ceramics," Journal of materials science, vol. 27, no. 21, pp. 5713-5719, 1992.
[38] S. Lee and C. A. Randall, "A modified Vegard’s law for multisite occupancy of Ca in BaTiO3–CaTiO3 solid solutions," Applied Physics Letters, vol. 92, no. 11, p. 111904, 2008.
[39] X. W. ZHANG, Y. H. HAN, M. LAL, and D. M. SMYTH, "Defect chemistry of BaTiO3 with additions of CaTiO3," Journal of the American Ceramic Society, vol. 70, no. 2, pp. 100-103, 1987.
[40] J. R. Macdonald and E. Barsoukov, "Impedance spectroscopy: theory, experiment, and applications," History, vol. 1, no. 8, 2005.
[41] 邱碧秀, 電子陶瓷材料. 台北市: 徐氏基金會, 1988.
[42] J. Bauerle, "Study of solid electrolyte polarization by a complex admittance method," Journal of Physics and Chemistry of Solids, vol. 30, no. 12, pp. 2657-2670, 1969.
[43] D. C. Sinclair and A. R. West, "Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance," Journal of Applied Physics, vol. 66, no. 8, pp. 3850-3856, 1989.
[44] E. Barsoukov and J. R. Macdonald, Impedance spectroscopy: theory, experiment, and applications. John Wiley & Sons, 2018.
[45] I. Burn and G. Maher, "High resistivity BaTiO3 ceramics sintered in CO-CO2 atmospheres," Journal of Materials Science, vol. 10, no. 4, pp. 633-640, 1975.
[46] H.-J. Hagemann and H. Ihrig, "Valence change and phase stability of 3 d-doped BaTiO3 annealed in oxygen and hydrogen," Physical Review B, vol. 20, no. 9, p. 3871, 1979.
[47] R. Waser, T. Baiatu, and K. H. Härdtl, "dc Electrical Degradation of Perovskite‐Type Titanates: I, Ceramics," Journal of the american ceramic society, vol. 73, no. 6, pp. 1645-1653, 1990.
[48] E. Loh, "A model of dc leakage in ceramic capacitors," Journal of Applied Physics, vol. 53, no. 9, pp. 6229-6235, 1982.
[49] H. Neumann and G. Arlt, "Maxwell-wagner relaxation and degradation of SrTiO3 and BaTiO3 ceramics," Ferroelectrics, vol. 69, no. 1, pp. 179-186, 1986.
[50] J. Rödel and G. Tomandl, "Degradation of Mn-doped BaTiO 3 ceramic under a high dc electric field," Journal of materials science, vol. 19, no. 11, pp. 3515-3523, 1984.
[51] K. Lehovec and G. A. Shirn, "Conductivity injection and extraction in polycrystalline barium titanate," Journal of Applied Physics, vol. 33, no. 6, pp. 2036-2044, 1962.
[52] J. MacChesney, P. Gallagher, and F. DiMarcello, "Stabilized barium titanate ceramics for capacitor dielectrics," Journal of the American Ceramic Society, vol. 46, no. 5, pp. 197-202, 1963.
[53] R. Waser, T. Baiatu, and K. H. Härdtl, "dc Electrical Degradation of Perovskite‐Type Titanates: II, Single Crystals," Journal of the American Ceramic Society, vol. 73, no. 6, pp. 1654-1662, 1990.
[54] H. Chazono and H. Kishi, "Sintering Characteristics in the BaTiO3–Nb2O5–Co3O4 Ternary System: II, Stability of So‐called “Core–Shell” Structure," Journal of the American Ceramic Society, vol. 83, no. 1, pp. 101-106, 2000.
[55] H. Chazono and H. Kishi, "DC-electrical degradation of the BT-based material for multilayer ceramic capacitor with Ni internal electrode: impedance analysis and microstructure," Japanese Journal of Applied Physics, vol. 40, no. 9S, p. 5624, 2001.
[56] M. Vollman and R. Waser, "Grain boundary defect chemistry of acceptor‐doped titanates: space charge layer width," Journal of the American Ceramic Society, vol. 77, no. 1, pp. 235-243, 1994.
[57] J.-C. M'Peko, A. R. Ruiz-Salvador, and G. Rodrı́guez-Fuentes, "Conductivity activation energy and analysis of the sintering process of dielectric ceramics," Materials Letters, vol. 36, no. 5-6, pp. 290-293, 1998.
[58] I. Coondoo, N. Panwar, R. Vidyasagar, and A. L. Kholkin, "Defect chemistry and relaxation processes: effect of an amphoteric substituent in lead-free BCZT ceramics," Physical Chemistry Chemical Physics, vol. 18, no. 45, pp. 31184-31201, 2016.
[59] H. Gong, X. Wang, S. Zhang, and L. Li, "Synergistic effect of rare-earth elements on the dielectric properties and reliability of BaTiO3-based ceramics for multilayer ceramic capacitors," Materials Research Bulletin, vol. 73, pp. 233-239, 2016.
[60] 廖哲敬, "鈣摻雜之鈦酸鋇陶瓷體電阻衰退行為與交流阻抗分析之關係," 成功大學資源工程學系學位論文, pp. 1-75, 2017.
[61] Y.-J. Kao, "再氧化之受體摻雜鋯鈦酸鋇鈣陶瓷的氫氧根缺陷與介電性質之關係," 成功大學資源工程學系學位論文, pp. 1-171, 2016.
[62] F. D. Morrison, D. C. Sinclair, and A. R. West, "Characterization of lanthanum‐doped barium titanate ceramics using impedance spectroscopy," Journal of the American Ceramic Society, vol. 84, no. 3, pp. 531-538, 2001.
[63] Y. Liu and A. R. West, "Ho-doped BaTiO3: Polymorphism, phase equilibria and dielectric properties of BaTi1− xHoxO3− x/2: 0≤ x≤ 0.17," Journal of the European Ceramic Society, vol. 29, no. 15, pp. 3249-3257, 2009.
[64] J. Fleig, S. Rodewald, and J. Maier, "Microcontact impedance measurements of individual highly resistive grain boundaries: General aspects and application to acceptor-doped SrTiO3," Journal of Applied Physics, vol. 87, no. 5, pp. 2372-2381, 2000.
[65] R. Hagenbeck and R. Waser, "Influence of temperature and interface charge on the grain-boundary conductivity in acceptor-doped SrTiO3 ceramics," Journal of applied physics, vol. 83, no. 4, pp. 2083-2092, 1998.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw