進階搜尋


下載電子全文  
系統識別號 U0026-1007201515293200
論文名稱(中文) 藉由絕熱捷徑之短且具容忍度的聚合物多模分(多)工器
論文名稱(英文) Short and Robust Polymer Mode (De)multiplexers using Shortcuts to Adiabaticity
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 103
學期 2
出版年 104
研究生(中文) 蔡松蒝
研究生(英文) Sung-Yuan Tsai
學號 L76034124
學位類別 碩士
語文別 英文
論文頁數 67頁
口試委員 指導教授-曾碩彥
口試委員-魏明達
口試委員-黃勝廣
口試委員-徐旭政
中文關鍵字 分工器  波導  耦合器 
英文關鍵字 (de)multiplexers  waveguides  coupler 
學科別分類
中文摘要 本論文致力於研究具容忍度的聚合物多模分工器,使用絕熱捷徑設計的理論分析與數值模擬。一開始先介紹耦合波導系統的基本理論,之後使用光前進傳播的模擬方法,模擬光在波導裡的情況,並分析耦合波導系統與近共振電磁場下兩能階系統之量子–光學相似性,藉此將絕熱捷徑應用到耦合波導系統中,並設計兩種具有容忍度的波導結構,使得波導的耦合效率與長度可以有效改善,最後我們藉由實際的模擬結果,驗證絕熱捷徑設計應用到波導上的適用性,並顯示其在寬度、距離以及波長有極高的製程容忍度。
英文摘要 This thesis is devoted to the theoretical investigation and numerical simulations of mode (de)multiplexers on polymer. We begin by introducing the theory of coupled-waveguide system and the quantum‐optical analogies between weakly-coupled waveguide structure and two-level system driven by near-resonant laser light. We apply shortcuts to adiabaticity to coupled-waveguide system and design two couplers, Ω-coupler and Δ-coupler. Ω-coupler was designed to optimize the system stability against coupling coefficient variations and Δ-coupler was designed to be robust against the input wavelength variations. The simulation results vertify the theoretical predictions and we use the approach to design mode (de)multiplexers that are compact, broadband and have large fabrication tolerance.
論文目次 中文摘要 i
Abstract ii
致謝 iii
Table of Contents iv
List of Figures v
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Introduction 1
1.3 Organization of the Thesis 2
Chapter 2 Theoretical Analysis 4
2.1 Theory of Coupled-Waveguide System 5
2.1.1 Eigenmode Equation for Dielectric Waveguides 5
2.1.2 Effective index method 9
2.1.3 Beam Propagation Method (BPM) 11
2.1.4 Coupled-Mode Theory (CMT) 14
2.2 Analogies between Waveguide Optics and Quantum Theory 23
2.2.1 Two-Level System: Rabi Oscillations 23
2.2.2 Analogies between the Waveguide Optics and Quantum Theory 30
2.3 Asymmetrical directional coupler (ADC) and shortcuts to adiabaticity 33
2.3.1 Ω-coupler 36
2.3.2 Δ-coupler 38
Chapter 3 Simulation Results and Discussion 39
3.1 Schematic of an ADC mode (de)multiplexer 40
3.2 The Relationships between the Coupling Coefficient and the Geometric Parameters 41
3.2.1 Coupling Coefficient, Ω 41
3.2.2 Degree of Mismatch between the Waveguides, Δ 44
3.3 Design the couplers 45
3.3.1 Ω-coupler 50
3.3.2 Δ-coupler 56
Chapter 4 Conclusion 62
Reference 63
參考文獻 1. E. Torrontegui, S. Iba ́n ̃ez, S. Mart´ınez-Garaot, M. Modugno, A. del Campo, D. Gue ́ry-Odelin, A. Ruschhaupt,X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At., Mol., Opt. Phys. 62, 117–169 (2013).
2. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38, 1854–1856 (2013).
3. N. Riesen and J. D. Love, “Design of mode-sorting asymmetric Y-junctions,” Appl. Opt. 51, 2778-2783 (2012).
4. Y. Ding, J. Xu, F. Da Ros, D. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21, 10376–10382 (2013).
5. J. Xing, Z. Li, X. Xiao, J. Yu, and Y. Yu, “Two-mode multiplexer and demultiplexer based on adiabatic couplers,” Opt. Lett. 38, 3468–3470 (2013).
6. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission,” J. Lightwave Techcnol. 30, 2421–2426 (2012).
7. Y. Li, C. Li, C. Li, B. Cheng, and C. Xue, “Compact two-mode (de)multiplexer based on symmetric Y-junction and multimode interference waveguides,” Opt. Express 22, 5781–5786 (2014).
8. D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38, 1422–1424 (2013).
9. M. Greenberg and M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Express 13, 9381–9387 (2005).
10. D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-divisionmultiplexed optical interconnects,” Prog. Electromagn. Res. 143, 773–819 (2013).
11. X. Chen and J. G. Muga, “Engineering of fast population transfer in three-level systems,” Phys. Rev. A 86, 033405 (2012).
12. S.-Y. Tseng, R.-D. Wen, Y.-F. Chiu, and X. Chen, “Short and robust directional couplers designed by shortcuts to adiabaticity,” Opt. Express 22, 18849–18859 (2014).
13. T. E. Murphy, “Design, fabrication and measurement of integrated Bragg grating optical filters, ” Massachusetts Institute of Technology (2000).
14. C.-L. Xu, W.-P. Huang, M. S. Stern, and S. K. Chaudhuri, Full-vectorial mode calculations by finite difference method, ” IEE Proceedings - Optoelectronics, 141, 281-286 (1994).
15. W.-P. Huang and C.-L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method, ” IEEE Journal of Quantum Electronics, 29, 2639-2649 (1993).
16. S.-Y. Tseng, “Development of linear and nonlinear components for integrated optical signal processing, ” The University of Maryland (2006).
17. M. D. Feit and J. A. Freck, Jr., “Light propagation in graded-index optical fibers, ” Appl. Opt., 17, 3990-3998, (1978).
18. L. Thylen, “The beam propagation method: An analysis of its applicability, ” Opt. Quantum Electron, ” 15, 433-439, 1983.
19. J. Yamauchi, J. Sho=ibayama, and H. Nakano, “Beam propagation method using Pade ́ approximant operators, ” trans. IEICE Jpn., J77-C-I, 490-494 (1994).
20. Y. Chung and N. Dagli, “Assessment of finite difference beam propagation,” IEEE J. Quantum Electron., 26, 1335-1339 (1990).
21. G. R. Hadley, “Wide-angle beam propagation using Pade ́ approximant operators ,” Opt. Lett., 17, 1426-1428 (1992).
22. G. R. Hadley, “A multistep method for wide angle beam propagation, ” Integrated Photon. Res., ITu I5-1, 387-391 (1993).
23. J. Yamauchi, J. Shibayama, and H. Nakano, “Modified finite-difference bean propagation method on the generalized Douglas scheme for variable coefficients, ” IEEE Photon. Technol. Lett., 7, 661-663 (1995).
24. J. Yamauchi, T. Ando, and H. Nakano, “Beam-propagation analysis of optical fibers by akternating direction implicit method, ” Electron. Lett., 27, 1663-1665 (1991).
25. J. Yamauchi, T. Ando, and H. Nakano, “Propagation beam analysis by alternating-direction implicit finite-difference method, ” Trans. IEICE Jpn., J75-C-I, 148-154 (1992)
26. P. L. Liu and B. J. Li, “Study of form bire fringence in waveguide devices using the semivectorial beam propagation method, ” IEEE Photon. Technol. Lett., 3, 913-915 (1991).
27. W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method, ” IEEE J. Quantum Electron., 29, 2639-2649 (1993).
28. M. Koshiba and Y. Tsuji, “A-wide angle finite element beam propagation method, ” IEEE Photon. Technol. Lett., 8, 1208-1210 (1996).
29. Kenji Kawano and Tsutomu Kitoh, “Introduction to Optical Waveguide Analysis: Solving Maxwell's Equation and the Schro ̈dinger Equation, ” (Wiley, 2001).
30. Marcuse, “Light Transmission Optics, ” New York: Van Nostrand Reinhold., (1972).
31. K. Okamoto, “Fundamentals of Optical Waveguides, 2nd ed., ” Academic Press, New York (2006).
32. N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques. ”Annual Review of Physical Chemistry, 52, 763-809 (2001).
33. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules. ” Reviews of Modern Physics, 70, 1003-1025 (1998).
34. M. Born, and V. Fock, “Beweis des adiabatensatzes. Zeitschrift für Phys. ” 51, 165-180 (1928).
35. X. Chen, E. Torrontegui, and J. G. Muga, “Lewis-Riesenfeld invariants and transitionless quantum driving, ” Phys. Rev. A 83, 062116 (2011).
36. H. R. Lewis and W. B. Riesenfeld, “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” J. Math. Phys. 10, 1458–1473 (1969).
37. A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, “Optimally robust shortcuts to population inversion in two-level quantum systems,” New J. Phys. 14, 093040 (2012).
38. X.-J. Lu, X. Chen, A. Ruschhaupt, D. Alonso, S. Gu´erin, and J. G. Muga, “Fast and robust population transfer in two-level quantum systems with dephasing noise and/or systematic frequency errors,” Phys. Rev. A 88, 033406 (2013).
39. W.-P. Huang, “ Coupled-mode theory for optical waveguides: an overview. ” Journal of the Optical Society of America A. 11, 963-983 (1994).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-03起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw