進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1007201421022500
論文名稱(中文) 受軸壓旋轉複合疊層圓錐截柱殼基本振頻對纖維角度之最佳化分析
論文名稱(英文) Maximization of the Fundamental Frequencies of Axially Compressed Rotating Laminated Truncated Conical Shells
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 張會昇
研究生(英文) Hui-Sheng Zhang
學號 N66004064
學位類別 碩士
語文別 中文
論文頁數 252頁
口試委員 指導教授-胡宣德
口試委員-王永明
口試委員-方中
口試委員-周中哲
口試委員-林文賓
中文關鍵字 複合材料  基本振動頻率  纖維角度  軸向壓力  旋轉速度 
英文關鍵字 composites  fundamental frequency  fiber angle  axial pressure  rotational speed 
學科別分類
中文摘要 複合疊層材料具備重量輕、高強度、高勁度、耐腐蝕、低導熱等優越特性,因此被廣泛應用在各種先進工程結構中。而結構物會受到外在環境的影響,產生振動並有可能造成共振現象,使結構體承受超過自身容許限度,導致過大變形而破壞。為了避免此現象,因此結構設計上,對於結構體自然振動頻率的分析課題必不可少。
本文使用ABAQUS有限元素軟體來分析複合疊層圓錐截柱殼之基本振動頻率,在受到不同邊界條件、幾何形狀、軸向壓力、旋轉速度等條件影響下,並利用黃金切割搜尋法來求出複合疊層圓錐截柱殼之最佳纖維角度及其對應之最高基本振動頻率。
設計受壓旋轉複合疊層圓錐截柱殼時,為了避開共振現象發生機率,可選擇適當的纖維角度與幾何形狀,以提高複合疊層圓錐截柱殼之基本振動頻率。其研究成果可供業界參考,相信對未來設計複合疊層圓錐截柱殼時會有所幫助。
英文摘要 Composites possess light weight, high strength, high stiffness, corrosion resistance, low thermal conductivity and other superior characteristics. Composites is widely used in a variety of engineering structures. To avoid structures producing resonance phenomenon and to avoid materials exceeded the allowable limits, the natural frequency analysis of composites structures is essential topics.
In this study, using finite element analysis software ABAQUS to analyze laminated truncated conical shells’s fundamental frequency. Subjected to the different boundary conditions ,geometric shapes, the axial pressure, rotational speed. The Golden section method is employed to find the optimal fiber orientations and its corresponding maximum fundamental frequency in the composite laminated cylindrical shells.
Design a compressed rotating laminated truncated conical shell,which can avoid the incidence of resonance phenomena. Select the appropriate angle and geometry of the fiber to improve the fundamental frequency of laminated truncated conical shells. The research results are valuable to the industry.
論文目次 摘要 I
Abstract II
致謝 VI
目錄 VII
表目錄 IX
圖目錄 XII
符號 XXI
第一章 緒論 1
1.1 研究動機 1
1.2 研究方法 3
1.3 研究目的 4
1.4 本文架構 4
第二章 材料勁度矩陣 5
2.1 殼元素簡介 5
2.2 材料主軸座標(1-2-3)系統下應力-應變關係 6
2.3 元素座標(X-Y-Z)系統下應力-應變關係 7
2.4 元素合應力與合力矩關係 9
第三章 有限元素之振動分析 12
3.1 振動方程式之推導 12
3.1.1 漢密爾頓原理 (Hamilton's principle) 12
3.1.2 元素之振動方程式 13
3.1.3 結構之振動方程式 16
3.2 基本頻率與振態之分析 16
第四章 黃金切割搜尋法 20
4.1 黃金分割搜尋法 20
第五章 數值分析結果與比較 22
5.1 問題敘述 22
5.2 基本振動頻率之元素收斂性分析 25
5.3 複合疊層圓錐截柱殼之邊界條件的變化,對於不同軸向長度的基本振動頻率影響........ 26
5.4 轉速為零的複合疊層圓錐截柱殼R2/R1,在不同軸向長度與軸壓力下,對基本振動頻率與纖維角度之影響 27
5.5 轉速為10000 RPM、20000 RPM的複合疊層圓錐截柱殼R2/R1,在不同軸向長度與軸壓力下,對基本振動頻率與纖維角度之影響 34
5.6 不同轉速的複合疊層圓錐截柱殼,在不同的軸向長度與軸壓力下,對最佳纖維角度與最高基本振動頻率之影響 35
第六章 結論與建議 37
6.1 結論 37
6.1.1 複合疊層圓錐截柱殼最佳纖維角度 37
6.1.2 複合疊層圓錐截柱殼最高基本振動頻率 38
6.1.3 複合疊層圓錐截柱殼模態圖 : 39
6.2 建議事項 40
參考文獻 41
表........................................................................... 50
圖........................................................................... 73
附錄 222
參考文獻 Abaqus Inc., ABAQUS User and Theory Manuals, Version 6.12, Providence, RI., 2013.
Abrate, S., “Optimal Design of Laminated Plates and Shells,” Composite Structures, Vol. 29, No. 3, pp. 269-286, 1994.
Baharlou, B., and Leissa, A. W., “Vibration and Buckling of Generally Laminated Composite Plates with Arbitrary Edge Conditions,” International Journal of Mechanical Sciences, Vol. 29, pp. 545-555, 1993.
Bathe, K. K., and Wilson, E. J., “Large Eigenvalue Problems in Dynamic Analysis,” Journal of Engineering Mechanics Division, ASCE, Vol. 98, pp. 1471-1485, 1972.
Bert, C. W., “Optimal Design of a composite Material Plate to Maximize,” Vol. 50, No. 2, pp. 229-237, 1977.
Bert, C. W., “Literature Review-Research on Dynamic Behavior of Composite and Sandwich Plates-V : Part II,” The shock and Composite and Vibration Digest, Vol. 23, No. 7, pp. 9-21, 1991.
Bhagwan, D. A., and Lawrence J. B., “Analysis and Performance of Fiber Composite,” Second Edition, Wiley, New York, 1990.
Braus, J., Baureis, H. P., Bickle, W., “Composite Material for Sliding Surface Bearings” United States Patent Office NO. 4,847,135, 1989.
Cairns, J. W., Hill, C., “Composite Bearings,” United States Patent Office NO. 3,909,087, 1975.
Chai, G. B., “Free Vibration of Generally Laminated Composite Plates with Various Edge Support Condition,” Composite Structures, Vol. 29, No. 3, pp. 249-258, 1994.
Chakrabarti, A., Topdar, P., and Sheikh, A. H., “Vibration of Pre-Stressed Laminated Sandwich Plates with Interlaminar Imperfections,”Journal of Vibration and Acoustics, Vol. 128, No. 6, pp. 673-681, 2006.
Chandrashekhara, K., “Free Vibration of Anisotropic Laminated Doubly Curved Shells,” Computers and Structures, Vol. 33, No. 6, pp. 435-440, 1989.
Chen, C.S., Cheng, W.S., Chien, R.D., and Doong, J.L., “Large Amplitude Vibration of an Initially Stressed Cross Ply Laminated Plates,” Applied Acoustics, Vol. 63, No. 9, pp. 939-956, 2002.
Chen, L. W., and Peng, W. K., “The stability behavior of rotating composite shafts under axial compressive loads,”Composite Structures, Vol. 41, No. 3-4, pp. 253-263, 1998.
Chen, L. W., and Peng, W. K.,“Dynamic stability of rotating composite shafts under periodic axial compressive loads,” Journal of Sound and Vibration, Vol. 212 , No. 2, pp. 215-230, 1998
Chun, L., and Lam, K. Y., “Dynamic Analysis of Clamped Laminated Curved Panels,” Composite Structures, Vol. 30, No. 2 ,pp. 389-398, 1995.
Cook, R. D., Malkus, D. S., and Plesha, M. E., Concepts and Applications of Finite Element Analysis, Third Edition, Chapter 13, Wiley, New York, 1989.
Crawley, E. F., “The Natural Modes of Graphite/Epoxy Cantilever Plates and Shells,” Journal of Composite Materials, Vol. 13, No. 3, pp. 195-205, 1979.
Deolasi, P. J., and Datta, P. K., “Parametric instability Characteristics of Rectangular Plates Subjected to Localized Edge Loading (Tension or Compression),” Computer & Structures, Vol. 54, No. 1, pp. 73-82, 1995.
Dhanaraj, R., and Palaninathan, “Free Vibration of Stressed Composite Composite Laminates,” Journal of Sound and Vibration, Vol. 142, No. 3, pp. 365-378, 1990.
Dickinson, S. M., “Lateral Vibration of Rectangular Plates Subject to In-plane Forces,” Journal of Sound and Vibration, Vol. 16, No. 4, pp. 465-472, 1971.
Duffy, K. J., and Adali, S., “Optimal Fiber of Antisymmetric Hybrid Laminates for Maximum Fundamental Frequency and Frequency Separation ,” Journal of Sound and Vibration, Vol. 146, No. 2, pp. 181-190, 1991.
Fisher, C. A., Ewing, M. S., and Leissa A. W., “Vibration of Unsymmetrically Laminated Subjected to In-plane Initially Stressed,” Composite Structures 4, Proceedings of the 4th International Conference, pp. 1461-1475, 1987.
Pradhan K.K.,Chakraverty S.,“Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method,” Composites Part B: Engineering, Vol. 51, No. 2, pp. 175-184, 2013.
Fukunaga, H., Sekine, H., and Sato, M., “Optimal Design of Symmetric Laminated Plates for Fundamental Frequency,” Journal of Sound and Vibration, Vol. 171, No. 2, pp. 219-229, 1994.
Gutierrez, R. H., Laura, P. A. A., and Rossit, C. A., “Fundamental Frequency of Transverse Vibration of a Clamped Rectangular Orthotropic Plate with a Free-Edge Hole,” Journal of Sound and Vibration, Vol. 235, No. 4, pp. 697-701, 2000.
H.P. Lee., “Dynamic Stability of Spinning Pre-Twisted Beams Subject to Axial Pulsating Loads,” Computer Methods in Applied Mechanics Engineering. Vol. 127 , No. 4, pp. 115-126 , 1995.
Hu, H. T., and Wang, S. S., “Optimization for Buckling Resistance of Fiber-Composite Laminate Shells with and without Cutouts,” Composite Structures, Vol. 22, pp. 3-13, 1992.
Hu, H. T., Theory of Plates, Department of Civil Engineering National Cheng Kung University Tainan Taiwan, 2011.
Hu, H. T., and Tasi, J. Y., “Maximization Of The Fundamental Frequencies Of Laminated Cylindrical Shells With Respect To Fiber Orientations,” Journal of Sound and Vibration, Vol. 225, No. 4, pp. 723-740, 1999.
Irons, B. M., “The Semi-Loof Shell Element,” In: Ashwell, D. G.; Gallagher, R. H. (ed.) Finite Elements for Thin Shells and Curved Members, Wiley, New York, pp. 197-222, 1976.
Jawad, M. H., “Theory and design of plate and shell structures,” First Edition, Chapter 11-12, p. 300-349, 1994.
Kolman, B., and Beck, R. E., Elementary Linear Programming with Applications, Academic Press, Orlando, pp. 59-142, 1980.
Leissa, A. W., and Kadi, A. S., “Curvature Effects on Shallow
Shell Vibrations,” Journal of Sound Vibration, Vol. 16, No.2, pp. 173-183, 1971.
Leissa, A. W., and Ayoub, E. F., “Vibration and Buckling of A Simply Supported Rectangular Plate Subjected to a Pair of In-plane Concentrated Forces,” Journal of Sound and Vibration, Vol. 127, No. 1, pp. 155-171, 1988.
Leiw, K. M., Ng, T. Y., and Zhao, X., “Vibration of Axially Loaded Rotating Cross-Ply Laminated Cylindrical Shells Via Ritz method,” Journal of Engineering Mechanics, Vol. 128, No. 9, pp. 1001-1007, 2002.
Leissa, A. W., and Narita, Y., “Vibration Studies for simply Supported Symmetrically Laminated Rectangular Plates,” Composite Structures, Vol. 12, No. 5, pp. 113-132, 1989.
Liu, H. W., and Hung, C. C., “Free Vibrations of Thick Cantilever Laminated Plates with Step-Change of Thickness,” Journal of Sound and Vibration, Vol. 169, No. 5, pp. 601 - 618, 1994.
Lou, K. A., and Yaniv, G., “Buckling of Circular Cylindrical Composite Shells Under Axial Compression and Bending Loads,” Journal of Composite Materials, Vol. 25. No. 2, p. 162-187,1991.
Narita, Y., and Leissa, A. W., “Frequency And Mode Shapes Of Cantilevered Laminated Composite Plates,” Journal of Sound and Vibration, Vol. 154, No. 1, pp. 161-172, 1992.
Narita, Y., and Leissa, A. W., “Frequency And Mode Shapes Of Cantilevered Laminated Composite Plates,” Journal of Sound and Vibration, Vol. 154, No. 1, pp. 161-172, 1992.
Nayak, A. K., Moy, S. S. J., and Shenoi, R. A., “A Higher Order Finite Element Theory for Buckling and Vibration Analysis of Initially Stressed Composite Sandwich Plates,” Journal of Sound and Vibration, Vol. 286, No. 4-5, pp. 763-780, 2005.
Noor, A. K., and Burton, W. S., “Three-Dimensional Solutions for the Free Vibrations and Buckling of Thermally Stressed Multilayered Angle-Ply Composite Plates,” Journal of Applied Mechanics, Vol. 59, No. 4, pp. 868-877 ,1992.
O'Neil, P. V., Advanced Engineering Mathematics, Second Edition, Chapter 10, 1987.
Oh IK. , “Damping characteristics of cylindrical laminates with viscoelastic layer considering temperature- and frequency-dependence,” J Therm Stresses, Vol. 32,No. 1,2009
Onoda, J., “Optimal Laminate Configurations of Cylindrical Shells for Axial Buckling,” AIAA Journal, Vol. 23, pp 1093-1098, 1985.
Qatu, M. S., and Leissa, A. W., “Natural Frequencies for Cantilevered Doubly Curved Laminated Composite Shallows Shells,” Composite Structures, Vol. 17, pp. 227-255, 1991.
Ramakrishna, S., and Rao, N. S., “Free Vibration Analysis of Laminates with Circular Cutout by Hybrid Stress Finite Element,” Composite Structures, Vol. 21, pp. 177-185, 1992.
Raouf, A. R., “Tailoring the Dynamic Characteristics of Composite Panels Using Fiber Orientation,” Composite Structures, Vol. 29, pp. 259-267, 1994.
Reddy, J. N., “Free Vibration Of Antisymmetric Angle-ply Laminated Plates Including Transverse Shear Deformation By The Finite Element Method ,” Journal of Sound and Vibration, Vol. 66, No. 4, pp. 565-576, 1979.
Robert, M. J., Mechanics of Composite Materials, Chapter 2, pp. 45-51, 1975.
Sharma, C. B., and Darvizeh, M., “Free Vibration of Specially Orthotropic, Multilayered, Thin Cylindrical Shells with Various End Condition,” Composite Structures, Vol. 7, No. 2, pp. 123-138 , 1987.
Sofiyev AH.,“The vibration and stability behavior of freely supported FGM conical shells subjected to external pressure,” Composite Structures, Vol. 89, No.2, pp. 356–366
Sankaranarayanan, N., Chandrasekaran, K. and Ramaiyan, G., “Free Vibrations of Laminated Conical Shells of Variable Thickness,” Journal of sound and Vibration, Vol. 123, No. 2, pp. 357-371 , 1988.
Sun, G., “A Practical Approach to Optimal Design of Laminated Cylindrical Shells for Buckling,” Composites Science and Technology, Vol. 36. No. 3, p. 243-253, 1989.
Shin WH, Lee SJ, Oh IK, Lee I.,“Thermal post-buckled behaviors of cylindrical composite shells with viscoelastic damping treatments, ” J Sound Vib, Vol. 32. No. 3, p. 93-111,2009.
Topal, U., and Uzman, U., “Optimal Design of Laminated Composite Plates to Maximise Fundamental Frequency Using MFD Method,” Structural Engineering and Mechanics, Vol. 24, No. 4, pp. 479-491, 2006.
Topal, U., and Uzman, U., “Maximization of Buckling Load of Laminated Composite Plates with Central Circular Holes Using MFD method,” struct Multidisc Optim, Vol. 35, No.2, pp. 131-139, 2008.
Topal, U., and Uzman, U., “Frequency Optimization of Laminated Composite Angle-Ply Plates with Circular Hole,” Materials and Design, Vol. 29, No.8, pp. 1512-1517, 2008.
Vanderplaats, G. N., “Numerical Optimization Techniques for Engineering Design with Applications,” McGraw-Hill, New York, pp. 155-157, 1984.
Watter, M., “Composite Missile Structure,” United States Patent Office NO. 3,066,822, 1962.
Whitney, J. M., “Free Vibration of Anisotropic Rectangular Plates,” Journal of the Acoustical Society of America, Vol. 52, No.1B, pp. 448-449, 1972.
Whitney, J. M., “Shear Correction Factors for Orthotropic Laminates Under Static Load,” Journal of Applied Mechanics, Vol. 40, No.1, pp. 302-304, 1973.
Whitney, J. M., “The Effect of Boundary Conditions on the Response of Laminates Under Static Load,” Journal of Applied Mechanics, Vol. 4, No.2, pp. 192-203, 1970.
Williams, C. W., “Composite Propeller Shaft Construction and Method of Making,” United States Patent Office NO. 3,553,978, 1971.
Wilkins, D. J., Bert, C. W. and Egle, D. M., “Free Vibrations of Orthotropic Sandwich Conical Shells with Various Boundary Conditions”, Journal of Sound and Vibration, Vol. 13, No.2, pp. 211-228, 1970.
歐勝昌,“對稱複合疊層圓錐截柱殼之基本振動頻率及其纖維角度受幾何形狀及邊界條件之影響,” 國立成功大學土木工程研究所,碩士論文,民國88年6月
黃翊瑋,“受壓旋轉複合疊層圓柱殼基本振頻對纖維角度之最佳化分析,”國立成功大學土木工程研究所,碩士論文,民國102年7月.
侯明輝,“幾何形狀及邊界條件對複合層板基本振動頻率及其纖維角度的影響,”國立成功大學土木工程研究所,碩士論文, 民國83年6月.
陳培仁,“複合疊層圓錐殼受軸壓的最佳化自然振動分析,”國立成功大學土木工程研究所,碩士論文,民國100年6月.
陳俊銘,“複合疊層曲面板受軸壓的最佳化自然振動分析,”國立成功大學土木工程研究所,碩士論文,民國93年6月.
陳獻墀,“圓錐截柱殼之最佳化挫曲分析,” 國立成功大學土木工程研究所,碩士論文,民國90年6月.
尹達, “簡灰法之研究與應用,” 國立中央大學機械工程研究所, 碩士論文,民國93年12月
彭竑維,“開孔複合疊層曲面板受軸壓的最佳化自振分析,” 國立成功大學土木 工程研究所,碩士論文,民國99年6月.
楊景森, “受壓複合疊層曲面板之最佳挫屈強度及其纖維角度受幾何形狀界條件之影響,” 國立成功大學土木工程研究所,碩士論文,民國88年6月.
蔡文魁,“複合疊層板受單軸壓力的最佳化自振分析,” 國立成功大學土木工程研究所,碩士論文,民國90年1月.
蔡振裕,“對稱複合疊層圓柱殼之基本振動頻率及纖維角度受幾何邊界形狀及邊界條件之影響,” 國立成功大學土木工程研究所,碩士論文,民國85年6月.
王國龍,“旋轉複合疊層圓柱殼基本振頻對纖維角度之最佳化分析,” 國立成功學土木工程研究所,碩士論文,民國93年6月.
莊欽登,“對稱複合疊層曲面板之基本振動頻率及其纖維角度受幾何形狀及邊界條件之影響,”國立成功大學土木工程研究所,碩士論文,民國84年6月.
樊庭宇,“應用Reissner混合變分原理之有限圓柱層殼元素法於功能性材料三明治圓柱殼結構之三維自然振動分析,”國立成功大學土木工程研究所,碩士論文,民國101年7月
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw