進階搜尋


下載電子全文  
系統識別號 U0026-1007201303314400
論文名稱(中文) 銫原子中階梯式電磁誘發透明的躍遷特性
論文名稱(英文) Transition Properties of Ladder-type Electromagnetically Induced Transparency in Cesium Atoms
校院名稱 成功大學
系所名稱(中) 物理學系碩博士班
系所名稱(英) Department of Physics
學年度 101
學期 2
出版年 102
研究生(中文) 何宗勳
研究生(英文) Zong-Syun He
學號 L28971039
學位類別 博士
語文別 英文
論文頁數 112頁
口試委員 指導教授-蔡錦俊
口試委員-傅永貴
召集委員-朱淑君
口試委員-施宙聰
口試委員-韓殿君
口試委員-陳應誠
中文關鍵字 銫原子  階梯式電磁誘發透明  綴飾態  都卜勒速度群積分  11s 精細結構磁耦常數  躍遷機率與躍遷強度  雙光子螢光  光耦極阱 
英文關鍵字 Cesium  Ladder-type EIT  dressed state  Doppler velocity integration  11s hyperfine magnetical coupling constant  transition probability and transition strength  two-photon fluorescence  Rabi frequency  dipole trap  FORT 
學科別分類
中文摘要 此論文對於銫原子在室溫下的階梯式電磁誘發透明現象做探討,其中包含
量測雷德堡原子的磁耦常數、波茲曼-馬克斯威爾速度群造成的效應和綴飾態
能階分裂的修正;此外,來自於不同躍遷能階的電磁誘發透明彼此之間的相對
強度關係也將會在此探討,論文最後將討論電磁誘發透明和其反應在雙光子躍
遷訊號下的線寬大小。本論文中的數值模擬分析採用解出光學布拉格和光泵激
發方程式來模擬原子在光和原子的交互作用後造成的現象來做討論。本論文主
要分為三大主題,第一個主題為利用室溫下電磁誘發透明窄線寬的特性量得銫
原子11s 2S1/2 的磁耦常數A=38.81±0.23 MHz,此實驗中的光譜除了由探測光和耦合光間的波長不匹配因子修正綴飾態的能階分裂間距外,也使用另一道校正
光束來校正雷射掃頻下的頻率軸,利用電磁誘發透明的同調性特質使較弱躍遷
強度的雷德堡態能階的精細結構亦可以量得。承接第一個主題,第二個主題探
討光泵激發效應造成不同躍遷能階的電磁誘發透明彼此之間的相對強度的差
異,探測光束和耦合光束不單只是產生量子干涉效應,其也會造成原子在黎曼
能階上居量分佈的重新排列,分析的結果顯示參與作用的原子數多寡將造成電
磁誘發透明的強度有所不同。第三個主題是研究室溫下階梯式電磁誘發透明的
線寬和其穿透度的探討,當探測光束很弱 (1.3 μW/cm2 (0.003Γ2)) 且耦合光束的Rabi frequency 大小在13.32 MHz =1.8Γ(Γ=Γ2+Γ3)的情況下,線寬低於Γ的電磁誘發透明依然可以觀測的到,此外,當耦合光束光強減弱時,量子破壞性干涉所造成的線寬可低至2.9 MHz (=0.39Γ);另一方面,藉由雙光子躍遷螢光
減少程度可以推得知電磁誘發透明的穿透效率約為25%,此項結果間接證明在
室溫系統下低的穿透率是不可避免的。
英文摘要 This dissertation reports the studies on the phenomenon of the ladder-type electromagnetically
induced transparency (EIT) in a room-temperature cesium cell, including the measurement
of magnetic dipole constant of Cs 11s 2S1/2, the effects of Boltzmann-Maxwell velocity
groups, and the modification of dressed state interval. Besides, the relative EIT intensities
owing to different transitions is investigated. Furthermore, EIT behaviors reflecting on
the two-photon excitations are explored as well. To simulate the experimental spectrum, a
numerical results by solving optical Bloch equations regarding coherence and decoherence,
and rate equations about optical pumping are introduced.
In simplicity, there are three topics in this dissertation. First, the hyperfine interval of
Cs 11s 2S1/2 is determined by using the ladder-type EIT. In this experiment, the magnetic
dipole constant of Cs 11s 2S1/2 is measured through two narrow-linewidth laser fields.
The EIT doublets are observed, and the EIT spectrum is identified by introducing the
wavelength mismatching factor under the dressed state scheme. Theoretical simulation
is performed by obtaining the solutions of optical Bloch equations and integrating them
over Doppler velocities, optical-pumping and two-photon coherence effects. Simulation
results correlate well with experimental data. Finally, the magnetic dipole constant of Cs
11s 2S1/2 A=38.81±0.23 MHz is elucidated by adding a calibration field to increase the
accuracy of the frequency scale.
Second, the relative intensities of the probe transmission in a ladder-type EIT are studied by considering the optical pumping effect between each Zeeman sublevels of the involved
transitions. The relative EIT intensities from different transitions remain a task so far. The
observed EIT spectra reveal a different probe or coupling power dependence for various
transmission peaks. In addition to causing quantum interference, the probe and coupling
laser fields realign the population of Zeeman sublevels in the ground state through optical
pumping. Analytic results indicate that the re-distribution levels failing to contribute
to the EIT peaks, either out of the transition path or zero transition probability, will
significantly affect the transmission intensity.
In the last topic, the subnatural linewidth, i.e., below Γ(= Γ2 + Γ3), in a ladder-type
EIT can be achieved in a room-temperature cesium cell, even though the coupling Rabi
frequency is as large as 1.8Γ. Under a low-light-level probe regime (1.3 μW/cm2 (0.003Γ2))
and weak coupling power, the narrowest EIT linewidth is 2.9 MHz (= 0.39Γ). Both the
transmission of the probe field and the dip on the two-photon excitation fluorescence
exhibit the subnatural linewidth behavior. At the room temperature, the transmittance
of the probe field has to integrate over the Doppler velocity distribution, which will shrink
the transmission linewidth due to the probe and coupling wavelength mismatch. The
EIT transparency rate derived from the loss of fluorescence is about 25%. This result
proves that the low transparency rate is inevitable when EIT is applied in the thermal
vapor. Finally, the simulation results by solving the optical Bloch equations are in good
agreement with both EIT and two-photon excitation fluorescence.
論文目次 Abstract i
Abstract in Chinese iii
Acknowledgments iv
Contents vi
List of Tables ix
List of Figures x
1 Introduction 1
1.1 Electromagnetically Induced Transparency (EIT) . . . . . . . . . . . . . . 1
1.2 EIT and Dressed State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Overview of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Theoretical Description 11
2.1 Atom-light Interaction in a Two-level Atom . . . . . . . . . . . . . . . . . 11
2.1.1 A two-level atom approximation . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Absorption of laser field in atomic medium . . . . . . . . . . . . . . 13
2.1.3 The pictures of quantum mechanics . . . . . . . . . . . . . . . . . . 18
2.1.4 Density matrix approach . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Ladder-type Electromagnetically Induced Transparency . . . . . . . . . . . 28
2.2.1 Density matrix approach in three levels . . . . . . . . . . . . . . . . 28
2.2.2 The EIT Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.3 Optical pumping effect . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.4 EIT in Doppler-broadening medium . . . . . . . . . . . . . . . . . . 40
3 Determination of the Hyperfine Magnetic Coupling Constant 45
3.1 Theoretical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.1 Modification of dressed state . . . . . . . . . . . . . . . . . . . . . . 47
3.1.2 Hyperfine structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3 Experimental Observation and Analysis . . . . . . . . . . . . . . . . . . . . 52
3.3.1 Observation of EIT spectrum . . . . . . . . . . . . . . . . . . . . . 52
3.3.2 Label of the transitions of EIT spectrum . . . . . . . . . . . . . . . 52
3.3.3 Simulation of EIT spectrum . . . . . . . . . . . . . . . . . . . . . . 54
3.3.4 Determination the hyperfine magnetic coupling constant . . . . . . 55
3.4 Conclusion on this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4 Electromagnetically Induced Transparency with Optical Pumping Effect 58
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Experimental Setup and Observation . . . . . . . . . . . . . . . . . . . . . 60
4.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.2 Experimental observation . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.1 The real transparency of EIT . . . . . . . . . . . . . . . . . . . . . 65
4.3.2 Optical pumping effect on EIT . . . . . . . . . . . . . . . . . . . . 66
4.3.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5 Conclusion on this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5 Low-light-level Ladder-type Electromagnetically Induced Transparency
and Two-step Excitation 76
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Experimental Setup and Observation . . . . . . . . . . . . . . . . . . . . . 79
5.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.2 Experimental observation . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Experimental Discussion and Analysis . . . . . . . . . . . . . . . . . . . . 83
5.3.1 EIT linewidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.2 Transparency rate of EIT . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Conclusion on this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6 Conclusion and Future Work 89
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
References 92
Appendices 101
A The Relaxation Matrix of the Optical Bloch Equation 101
B The Rabi Frequency 104
B.1 The Rabi Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
B.2 The Calculation of the Rabi Frequency . . . . . . . . . . . . . . . . . . . . 107
C The Optical Dipole Trap 109
參考文獻 [1] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Light speed reduction to 17
metres per second in an ultracold atomic gas, Nature 397, 594 (1999).
[2] S. E. Harris, J. E. Field, and A. Imamoˇglu, Non-linear optical processes using electromagnetically
induced transparency, Phys. Rev. Lett. 64, 1107 (1990).
[3] S. E. Harris, Electromagnetically induced transparency, Phys. Today, June, 36 (1997).
[4] M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, Measurement of Dispersive
Properties of Electromagnetically Induced Transparency in Rubidium Atoms, Phys.
Rev. Lett. 74, 666 (1995).
[5] U. Fano, EEffects of Configuration Interaction on Intensities and Phase Shifts, Phys.
Rev. 124, 1866 (1961).
[6] W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Quantum Zeno
effect, Phys. Rev. A 41, 2295 (1990).
[7] O. Kocharovskaya, and P. Mandel, Amplification without inversion: The double-Λ
scheme, Phys. Rev. A 42, 523 (1990).
[8] M. O. Scully, S. Y. Zhu, and A. Gavrieliedes, Degenerate quantum-beat laser: Lasing
without inversion and inversion without lasing, Phys. Rev. Lett. 62, 2813 (1989).
[9] S. E. Harris, Lasers Without Inversion: Interference of Lifetime-Broadened Resonances,
Phys. Rev. Lett. 62, 1033 (1989).
[10] S. E. Harris and J. J. Macklin, Lasers Without Inversion: Single-Atom Transient
Response, Phys. Rev. A 40, 4135 (1989).
[11] A. Imamoˇglu and S. E. Harris, Lasers Without Inversion: Interference of Dressed
Lifetime-Broadened States, Opt. Lett. 14, 1344 (1989).
[12] S. Alam, Lasers without Inversion and Electromagnetically Induced Transparency,
SPIE Press, Bellingham, United States, 1999.
[13] K. Bergmann, H. Theuer, and B. W. Shore, Coherent population transfer among
quantum states of atoms and molecules, Rev. Mod. Phys. 70, 1003 (1998).
[14] B. Lounis and C. Cohen-Tannoudji, Coherent population trapping and Fano profiles,
J. Phys. II, Paris, 2, 579 (1992).
[15] J. P. Marangos, Topical review Electromagnetically induced transparency, J. Mod.
Opt. 45, 3, 471 (1998).
[16] Y.Wu and X. Yang, Electromagnetically induced transparency in V -, Λ-, and cascadetype
schemes beyond steady-state analysis, Phys. Rev. A 71, 053806 (2005).
[17] D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, Continuouswave
electromagnetically induced transparency: A comparison of V , Λ, and cascade
systems, Phys. Rev. A 52, 2302 (1995).
[18] M. Fleischhauer, A. Imamoˇglu, and J. P. Marangos, Electromagnetically induced
transparency: optics in coherent media, Rev. Mod. Phys. 77, 633 (2005).
[19] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Storage
of Light in Atomic Vapor, Phys. Rev. Lett. 86, 783 (2001).
[20] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Observation of coherent optical
information storage in an atomic medium using halted light pulses, Nature 409, 490
(2001).
[21] Y. F. Chen, S. H. Wang, C. Y. Wang, and I. A. Yu, Manipulating the retrieved width
of stored light pulses, Phys. Rev. A 72, 053803 (2005).
[22] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble,
Photon blockade in an optical cavity with one trapped atom, Nature 436, 87 (2005).
[23] S. Wielandy and A. L. Gaeta, Investigation of electromagnetically induced transparency
in the strong probe regime, Phys. Rev. A 58, 2500 (1998).
[24] K. Pandey and V. Natarajan, Splitting of electromagnetically induced transparency
under strong-probe conditions due to Doppler averaging, J. Phys. B: At. Mol. Opt.
Phys. 41, 185504 (2008).
[25] A. Imamoˇglu, H. Schmidt1, G. Woods, and M. Deutsch, Strongly Interacting Photons
in a Nonlinear Cavity, Phys. Rev. Lett. 79, 1467 (1997).
[26] P. Grangier, Daniel F. Walls, and K. M. Gheri, Comment on ”Strongly Interacting
Photons in a Nonlinear Cavity”, Phys. Rev. Lett. 81, 2833 (1998).
[27] M. Albert, A. Dantan, and M. Drewsen, Cavity electromagnetically induced transparency
and all-optical switching using ion Coulomb crystals, Nature Photonics 5,
633 (2011).
[28] C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, Classical analog of electromagnetically
induced transparency, Am. J. Phys. 70, 37 (2002).
[29] A. K. Mohapatra, T. R. Jackson, and C. S. Adams, Coherent Optical Detection of
Highly Excited Rydberg States Using Electromagnetically Induced Transparency, Phys.
Rev. Lett. 98, 113003 (2007).
[30] M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh,
Measurement of absolute transition frequencies of 87Rb to nS and nD Rydberg states by
means of electromagnetically induced transparency, Phys. Rev. A 83, 052515 (2011).
[31] A. Krishna, K. Pandey, A. Wasan, and V. Natarajan, High-resolution hyperfine spectroscopy
of excited states using electromagnetically induced transparency, Europhys.
Lett. 72, 221 (2005).
[32] R. Y. Chang, Y. C. Lee, W. C. Fang, M. T. Lee, Z. S. He, B. C. Ke, and C. C. Tsai, A
narrow window of Rabi frequency for competition between electromagnetically induced
transparency and Raman absorption, J. Opt. Soc. Am. B 27, 85 (2010).
[33] R. Y. Chang, W. C. Fang, Z. S. He, B. C. Ke, P. N. Chen, and C. C. Tsai, Doubly
dressed states in a ladder-type system with electromagnetically induced transparency,
Phys. Rev. A 76, 053420 (2007).
[34] S. H. Autler and C. H. Townes, Stark effect in rapidly varying fields, Phys. Rev. 100,
703 (1955).
[35] L. Yang, L. Zhang,X. Li, L. Han, G. Fu, N. B. Manson, D Suter, and C. Wei, Autler-
Townes effect in a strongly driven electromagnetically induced transparency resonance,
Phys. Rev. A 72, 053801 (2005).
[36] Y. Q. Li and M. Xiao, Observation of quantum interference between dressed states in
an electromagnetically induced transparency, Phys. Rev. A 51, 4959 (1995).
[37] S. M. Iftiquar, G. R. Karve, and Vasant Natarajan, Subnatural linewidth for probe
absorption in an electromagnetically-induced-transparency medium due to Doppler averaging,
Phys. Rev. A 77, 063807 (2008).
[38] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions:
Basic Process and Appilcations, Wiley Press, New York , 1992.
[39] M. Fox, Quantum Optics: An Introduction, Oxford University Press, Sheffield, 2006.
[40] C. J. Foot, Atomic Physics, Oxford University Press, Oxford, 2005.
[41] E. Hecht, Optics (4th Edition), Addison-Wesley Press, Adelphi, 2001.
[42] J. D. Jackson, Classical Electrodynamics (3rd Edition), Wiley Press, Berkeley, California,
1998.
[43] W. Demtröder, Laser Spectroscopy: Vol. 1: Basic Principles, Springer Press, Kaiserslautern,
2008.
[44] D. J. Griffiths, Introduction to Quantum Mechanics (2nd Edition), Pearson Prentice
Hall Press, Reed, 2004.
[45] N. Zettili, Quantum Mechanics: Concepts and Applications, Wiley Press, Jacksonville,
2001.
[46] M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press,
Cabrage, UK, 1997.
[47] M. Sargent III, M. O. Scully, and W. E. Lamb Jr., Laser Physics, Addison-Wesley
Press, Reading, Mass., 1974.
[48] C. C. Gerry and P. L. Knight, Introductory Quantum Optics, Cambridge University
Press, Cabrage, UK, 2005.
[49] W. Happer, Optical Pumping, Rev. Mod. Phys. 44, 169 (1972).
[50] W. Franzen and A.G. Emslie, Atomic Orientation by Optical Pumping,Phys. Rev.
108, 1453 (1957).
[51] M. Krainska-Miszczak, Alignment and orientation by optical pumping with pi polarised
light, J. Phys. B 12, 555 (1979).
[52] P. M. Farrell and W. R. MacGillivray, On the consistency of Rabi frequency calculations,
J. Phys. A 28, 209 (1995).
[53] J. E. Stalnaker, V. Mbele, V. Gerginov, T. M. Fortier, S. A. Diddams, L. Hollberg,
and C. E. Tanner, Femtosecond frequency comb measurement of absolute frequencies
and hyperfine coupling constants in cesium vapor, Phys. Rev. A 81, 043840 (2010).
[54] Y. Y. Chang, V-Type Electromagnetically Induced Transparency in Cesium atom,
Master Thesis, National Chen Kung University (2010).
[55] D. Halliday, R. Resnick, and K. S Krane, Physics (5th Edition), Wiley Press, New
York, 2002.
[56] R. M. Eisberg and R. Resnick, Quantum physics of atoms, molecules, solids, nuclei,
and particles (2nd Edition), Wiley Press, New York , 1985.
[57] C. H. Tsai, Measure the Hyperfine Structure of the 11S State of Cesium by Using
Electromagnetically Induced Transparency, Master Thesis, National Chen Kung University
(2011).
[58] D. DiBerardino and C. E. Tanner,Lifetime measurements of cesium 5d 2D5/2,3/2 and
11s 2S1/2 states using pulsed-laser excitation, Phys. Rev. A 57, 4204 (1998).
[59] V. Gerginov, A. Derevianko, and C. E. Tanner,Observation of the Nuclear Magnetic
Octupole Moment of 133Cs, Phys. Rev. Lett. 91, 072501 (2003).
[60] B. R. Mollow, Power Spectrum of Light Scattered by Two-Level Systems, Phys. Rev.
188, 1969 (1969).
[61] J. J. Clarke, W. A. van Wijngaarden, and H. Chen, Electromagnetically induced
transparency using a vapor cell and a laser-cooled sample of cesium atoms, Phys.
Rev. A 64, 023818 (2001).
[62] S. Shepherd, D. J. Fulton, and M. H. Dunn, Wavelength dependence of coherently
induced transparency in a Doppler-broadened cascade medium, Phys. Rev. A 54, 5394
(1996).
[63] H. Haken and H. C. Wolf, The Physics of Atoms and Quanta Introduction to Experiments
and Theory (6th Edition), Springer-Verlag Berlin Heidelberg, New York,
2000.
[64] C. B. Alcock, V. P. Itkin, and M. K. Horrigan, VAPOR PRESSURE OF THE
METALLIC ELEMENTS, Can. Metal. Q. 23, 309 (1984).
[65] R. Y. Chang, W. C. Fang, B. C. Ke, Z. S. He, M. D. Tsai, Y. C. Lee, and C. C. Tsai,
Suppression and recovery of the trapping of atoms using a ladder-type electromagnetically
induced transparency, Phys. Rev. A 76, 055404 (2007).
[66] H. R. Noh and H. S. Moon, Calculation of line shapes in double-resonance optical
pumping, Phys. Rev. A 80, 022509 (2009).
[67] P. Tsekeris, R. Gupta, W. Happer, G. Belin, and S. Svanberg, Determination of
hyperfine structure of highly excited S states in alkali atoms using a CW dye laser,
Phys. Lett. A. 48, 101 (1974).
[68] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Observation of coherent optical
information storage in an atomic medium using halted light pulses, Nature(London)
409, 490 (2001).
[69] S. E. Harris and Y. Yamamoto, Photon Switching by Quantum Interference, Phys.
Rev. Lett. 81, 3611(1998).
[70] M. Yan, E. G. Rickey, and Y. Zhu, Observation of absorptive photon switching by
quantum interference, Phys. Rev. A 64, 041801(R) (2001).
[71] W. B. Hawkins and R. H. Dicke, The Polarization of Sodium Atoms, Phys. Rev. 91,
1008 (1953).
[72] H. S. Moon, L. Lee, and J. B. Kim, Double-resonance optical pumping of Rb atoms,
J. Opt. Soc. Am. B 24, 2157 (2007).
[73] D. McGloin, M. H. Dunn, and D. J. Fulton, Polarization effects in electromagnetically
induced transparency, Phys. Rev. A 62, 053802 (2000).
[74] H. S. Moon, L. Lee, and J. B. Kim, Double resonance optical pumping effects in
electromagnetically induced transparency, Opt. Express 16, 12163 (2008).
[75] H. S. Moon and H. R. Noh, Polarization dependence of double-resonance optical pumping
and electromagnetically induced transparency in the 5S1/2−5P3/2−5D5/2 transition
of 87Rb atoms, Phys. Rev. A 84, 033821 (2011).
[76] H. R. Noh and H. S. Moon, Diagrammatic analysis of multiphoton processes in a
ladder-type three-level atomic system, Phys. Rev. A 84, 053827 (2011).
[77] B. Yang, J. Gao, T. Zhang, and J. Wang, Electromagnetically induced transparency
without a Doppler background in a multilevel ladder-type cesium atomic system, Phys.
Rev. A 83, 013818 (2011).
[78] H. R. Noh and H. S. Moon, Transmittance signal in real ladder-type atoms, Phys.
Rev. A 85, 033817 (2012).
[79] Z. S. He, J. H. Tsai, M. T.Lee, Y. Y. Chang, C. C. Tsai, and T. J. Whang, Determination
of the Cesium 11s2S1/2 Hyperfine Magnetic Coupling Constant Using
Electromagnetically Induced Transparency, J. Phys. Soc. Jpn. 81, 124302 (2012).
[80] J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, Electromagnetically induced
transparency in ladder-type inhomogeneously broadened media: Theory and experiment,
Phys. Rev. A 51, 576 (1995).
[81] R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, Two-photon
effects in continuous-wave electromagnetically-induced transparency, Opt. Commun.
119, 61 (1995).
[82] S. Brandt, A. Nagel, R. Wynands, and D. Meschede, Buffer-gas-induced linewidth
reduction of coherent dark resonances to below 50 Hz, Phys. Rev. A 56, R1063 (1997).
[83] N. Mulchan, D. G. Ducreay, R. Pina, M. Yan, and Y. Zhu, Nonlinear excitation by
quantum interference in a Doppler-broadened rubidium atomic system, J. Opt. Soc.
Am. B 17, 820 (2000).
[84] M. Yan, E. G. Rickey, and Y. Zhu, Nonlinear absorption by quantum inteference in
cold atoms, Opt. Lett. 26, 548 (2001).
[85] Danielle A. Braje, Vlatko Bali´c, G. Y. Yin, and S. E. Harris, Low-light-level nonlinear
optics with slow light, Phys. Rev. A 68, 041801(R) (2003).
[86] Z. S. He, J. H. Tsai, Y. Y. Chang, C. C. Liao, and C. C. Tsai, Ladder-type electromagnetically
induced transparency with optical pumping effect, Phys. Rev. A 87,
033402 (2013).
[87] G. Alessandretti, F. Chiarini, G. Gorini and F. Petrucci, Measurement of the Cs
8S-Level Lifetime , Opt. Commun. 20, 289 (1977).
[88] P. R. S. Carvalho, Lu´is E. E. de Araujo, and J. W. R. Tabosa, Angular dependence of
an electromagnetically induced transparency resonance in a Doppler-broadened atomic
vapor, Phys. Rev. A 70, 063818 (2004).
[89] F. Goldfarb, J. Ghosh, M. David, J. Ruggiero, T. Chanelière, J.-L. Le Gouët, H.
Gilles, R. Ghosh, and F. Bretenaker, Observation of ultra-narrow electromagnetically
induced transparency and slow light using purely electronic spins in a hot atomic vapor,
Europhys. Lett. 82, 54002 (2008).
[90] E. L. Raab, M. Prentiss, Alex Cable, Steven Chu, and D. E. Pritchard, Trapping of
Neutral Sodium Atoms with Radiation Pressure, Phys. Rev. Lett. 59, 2631 (1987).
[91] C. Wieman, G. Flowers, and S. Gilbert, Inexpensive laser cooling and trapping experiment
for undergraduate laboratories, Am. J. Phys. 63, 317 (1995).
[92] Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu,
Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay,
Phys. Rev. Lett. 110, 083601 (2013).
[93] M. H. Anderson, W. Petrich, J. R. Ensher, and E. A. Cornell, Reduction of lightassisted
collisional loss rate from a low-pressure vapor-cell trap, Phys. Rev. A 50,
R3597 (1994).
[94] C. Fort, F. S. Cataliotti, M. Prevedelli, and M. Inguscio, Temperature-selective trapping
of atoms in a dark state by means of quantum interference, Opt. Lett. 22, 14,
1107 (1997).
[95] J. Y. Kim and D. Cho, Dark-Spot Magneto-Optical Trap of Cesium Atoms, J. Korean
Phys. Soc. 39, 5, 864 (2001)
[96] R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, Optical dipole traps for neutral
atoms, Adv. At. Mol. Opt. Phy. 42, 95 (2000)
[97] D. Boiron, A. Michaud, J. M. Fournier, L. Simard1, M. Sprenger, G. Grynberg, and
C. Salomon, Cold and dense cesium clouds in far-detuned dipole traps, Phys. Rev. A
57, R4106 (1998).
[98] K. L. Corwin, S. J. M. Kuppens, D. Cho, and C. E. Wieman, Spin-Polarized Atoms
in a Circularly Polarized Optical Dipole Trap, Phys. Rev. Lett. 83, 1311 (1999).
[99] S. J. M. Kuppens, K. L. Corwin, K. W. Miller, T. E. Chupp, and C. E. Wieman,
Loading an optical dipole trap, Phys. Rev. A 62, 013406 (2000).
[100] I. I. Rabi, Space Quantization in a Gyrating Magnetic Field, Phys. Rev. 51, 652
(1937).
[101] Daniel A. Steck, “Cesium D Line Data” available online at http://steck.us/alkalidata
(revision 2.1.4, 23 December 2010).
[102] H. J. Metcalf, P. van der Straten, P. Straten, Laser Cooling and Trapping, Springer,
1999.
[103] H. W. Lin, Experimental Study of Loading Cesium Atoms from a Magneto-Optical
Trap to an Optical Dipole Trap, Master Thesis, National Chen Kung University
(2010).
[104] D. Boiron, C. Triché, D. R. Meacher, P. Verkerk, and G. Grynberg, Threedimensional
cooling of cesium atoms in four-beam gray optical molasses, Phys. Rev.
A 52, R3425 (1995).
[105] C. Triché, P. Verkerka, and G. Grynbergb, Blue-Sisyphus cooling in cesium gray
molasses and antidot lattices, Eur. Phys. J. D 5, 225 (1999).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-07-12起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-07-12起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw