進階搜尋


下載電子全文  
系統識別號 U0026-1007201219164200
論文名稱(中文) 溫度對有機雙極性場效電晶體與互補式反向器之電特性影響研究
論文名稱(英文) Studies of temperature effects on electrical properties of ambipolar organic field–effect transistors and complementary inverters
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 100
學期 2
出版年 101
研究生(中文) 洪崇瑋
研究生(英文) Chung-Wei Hung
學號 l76991350
學位類別 碩士
語文別 中文
論文頁數 97頁
口試委員 指導教授-鄭弘隆
口試委員-周維揚
口試委員-王右武
中文關鍵字 雙極性  有機薄膜電晶體  反向器  變溫量測 
英文關鍵字 Ambipolar  Organic thin film transistors  Inverters  variable temperature 
學科別分類
中文摘要 本論文主要研究操作溫度對五苯雙極性有機薄膜電晶體電特性的影響,量測溫度範圍從300 K至400 K,實驗共分為兩部分,第一部分聚焦於改變操作溫度,研究不同溫度對雙極性五苯電晶體之p-通道與n-通道電特性的影響。第二部分,使用雙極性五苯薄膜電晶體製作互補式反向器,研究操作溫度對此互補式反向器電特性的影響。
第一部份:探討不同操作溫度對使用不同介電層所製作之五苯雙極性電晶體電特性影響,使用三種介電層:無修飾之二氧化矽、與分別使用聚甲基丙烯酸甲酯(PMMA)與聚苯乙烯(PS) 修飾二氧化矽的複合介電層。即時變溫量測過程中,結果指出,使用PMMA與PS高分子修飾層所製作的電晶體元件,其電洞或電子載子遷移率皆隨著溫度升高而變小,而僅使用二氧化矽的元件,其載子遷移率則變化不大。利用變溫拉曼光譜量測對應的五苯薄膜微結構隨温度的變化,發現高溫時,薄膜內五苯分子間振動耦合能較弱,且振動峰的半高寬較寬,因此將不利於電荷傳輸,可合理解釋五苯元件於高溫時的載子遷移率較差。利用變溫電容-電壓量測,觀察到溫度增加造成平帶電壓往零伏特移動與感應電荷增加,可合理推論高溫時元件的臨界電壓降低。五苯雙極性電晶體元件的電特性隨操作温度改變而改變,可歸因於電場與熱效應的同時作用,單純的熱效應並不會使元件產生永久性變化。
第二部分探討操作溫度對雙極性互補式反向器的電特性的影響。利用雙極性五苯電晶體組成互補式反相器,發現反向器之順逆向開關切換電壓差(△VS)所造成的遲滯面積將隨溫度增加升高而降低,驗證了反相器的開關切換電壓與個別組成的電晶體之臨界電壓有高相依性。於室溫時,雙極性互補式反向器元件表現出較不理想的雜訊邊限,可藉由升溫改善之,使反相器的電特性更接近理想操作模式。
英文摘要 This study investigates the influence of the operating temperature, ranging from 300 K to 400 K, on the electrical characteristics of pentacene- based ambipolar organic thin-film transistors and complementary-like inverters. The study can be divided into the following two parts: (1) the effects of temperature on the p-channel and n-channel electrical characteristics, respectively, of the ambipolar transistors were investigated; (2) complementary-like inverters were realized based on the pentacene-based ambipolar transistors, and named ambipolar inverters. We studied the effect of temperature on the electrical characteristics of the ambipolar inverters.
Part 1: We fabricated the pentacene-based transistors using three kinds of gate dielectrics, including unmodified silicon dioxide (SiO2), poly(methyl methacrylate) (PMMA) modified SiO2, and poly(styrene) (PS) modified SiO2. The effects of operating temperature on the electrical characteristics of the corresponding devices were studied. When PMMA and PS modified SiO2 gate dielectrics were used, we observed that both hole- and electron- mobilities decrease with increasing temperature. In contrast, the transistor with unmodified SiO2 shows unipolar p-channel behavior and the observed hole mobilities are insensitive to temperature variations. Microstructural analysis using variable-temperature Raman spectra reveals that increasing temperature results in reduced intermolecular vibrational coupling energy and broadening of Raman peaks for the pentacene films, thereby reducing charge transport within active channel of transistors. This provides a reasonable basis for the lower hole- and electron-mobilities of pentacene-based ambipolar transistors at higher operating temperatures. Variable-temperature capacitance-voltage measurements of metal-insulator- pentacene-metal capacitors indicated that the flatband voltage shift toward the positive direction (i.e., shift to zero direction) as well as accumulation capacitance increases with increasing temperature, thereby providing an explanation for the threshold voltage shift of the corresponding transistors at higher temperatures. As operating temperature changes, the resulting changes in ambipolar electrical characteristics of pentacene-based transistors were attributed to the combined effects of electric field and thermal.
Part 2: we studied the influence of operating temperature on the electrical characteristics of the pentacene-based ambipolar inverters. With increasing operating temperature, we observed a decrease in the hysteresis area, which is defined as the difference between forward and reverse switching voltages. This observation confirmed that the switching voltages of the investors are highly dependent on the threshold voltages of the individual p-channel and n-channel transistors. Finally, we found that the non-ideal noise margins of ambipolar investors could be improved by increasing the operating temperature, thus achieving more ideal operations.
論文目次 中文摘要 I
Abstract III
誌謝 .V
目錄 VII
表目錄 X
圖目錄 XII
第一章 有機薄膜電晶體簡介 1
1-1 有機光電元件簡介 1
1-2 有機薄膜電晶體概論 2
1-2-1 有機薄膜電晶體的基本架構 2
1-2-2 雙極性有機薄膜電晶體簡介與應用發展 2
1-3 場效應電晶體的操作原理 4
1-3-1 有機薄膜電晶體操作原理 4
1-3-2 雙載子有機薄膜電晶體的操作與特性 5
1-4 互補式金氧半場效電晶體工作原理 6
1-4-1 互補式金氧半場效電晶體簡介 6
1-4-2 CMOS反相器原理 7
1-4-3 CMOS反相器特性 7
1-5 研究動機 8
第二章 實驗方法與分析工具 16
2-1 實驗材料 16
2-1-1 有機半導體材料 16
2-1-2 高分子絕緣材料 16
2-1-3 二氧化矽絕緣材料 17
2-2 元件製程 17
2-2-1 基板清洗 17
2-2-2 旋轉塗佈 17
2-2-3 熱蒸鍍成長有機半導體及金屬電極 17
2-3 實驗相關儀器 18
2-3-1 加溫裝置 18
2-3-2 電性分析 18
2-3-3 拉曼散射量測 19
第三章 變溫量測對雙極性有機電晶體電特性的影響 21
3-1 前言 21
3-2 實驗方法 23
3-3 結果與討論 24
3-3-1 電特性分析結果 24
3-3-2 遲滯現象 25
3-3-3 熱與電場應力效應 26
3-3-4 拉曼光譜研究主動層微結構 27
3-4 綜合討論 30
第四章 變溫量測對雙極性有機互補式反相器電特性的影響 73
4-1 前言 73
4-2 實驗方法 74
4-3 結果與討論 75
4-3-1 電特性分析結果 75
4-3-2 遲滯現象 76
4-4 綜合討論 77
第五章 總結與未來展望 91
參考文獻 93

參考文獻 [1] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. Macdiarmid, “Electrical conductivity in doped polyacetylene”, Physical Review Letters, 39, 1098-1101, 1977.
[2] H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, A. J. Heeger, “Synthesis of electrically conducting organic polymers:Halogen derivatives of polyacetylene”, Journal of the Chemical Society-Chemical Communications , 578-580, 1977.
[3] Y. Guo, G. Yu, Y. Liu, “Functional organic field-effect transistors”, Advanced Materials, 22, 4427-4447, 2010.
[4] Y. Wen, Y. Liu, “Recent progress in n-channel organic thin-film transistors”, Advanced Materials, 22, 1331-1345, 2010.
[5] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%”, Nature Photonics, 3, 297-303, 2009.
[6] Y. Zhao, W. Z. Liang, “Charge transfer in organic molecules for solar cells : theoretical perspective”, Chemical Society Review, 41, 1075-1087, 2012.
[7] R. Wang, D. Liu, H. Ren, T. Zhang, H. Yin, G. Liu, J. Li, “Highly efficient orange and white organic light-emitting diodes based on new orange iridium complexes”, Advanced Materials, 23, 2823-2827, 2011.
[8] M. Cai, T. Xiao, E. Hellerich, Y. Chen, R. Shinar, J. Shinar, “Highly efficient solution-processed small molecule electrophosphorescent organic light-emitting diodes”, Advanced Materials, 23, 3590-3596, 2011.
[9] B. B. Y. Hsu, C. D. Duan, E. B. Namdas, A. Gutacker, J. D. Yuen, F. Huang, Y. Cao, G. Bazan, D. W. Samuel, A. J. Heeger, ”Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors”, Advanced Materials, 24, 1171-1175, 2012.
[10] E. J. Feldmeier, M. Schidleja, C. Melzer, H. V. Seggern, “A color -tuneable organic light-emitting transistor”, Advanced Materials, 22, 3568-3572, 2010.
[11] M. Rockele, D. V. Pham, A. Hoppe, J. Steiger, S. Botnaras, M. Nag, S. Steudel, K. Myny, S. Schols, R. Muller, B. V. D. Putten, J. Genoe, P. Heremans, “Low-temperature and scalable complementary thin-film technology based on solution-processed metal oxide n-TFTs and pentacene p-TFTs”, Organic Electronics, 12, 1909-1913, 2011.
[12] T. Sekitani, T. Someya, “Stretchable, large-area organic electronics”, Advanced Materials, 22, 2228-2246, 2010.
[13] T. Sekitani, U. Zschieschang, H. Klauk, T. Someya, “Flexible organic transistor and circuits with extreme bending stability”, Nature Materials, 9, 1015-1022, 2010.
[14] K. Asadi, D. M. D. Leeuw, B. D. Boer, P. W. M. Blow, “Organic non-valatile memories from ferroelectric phase-seperated blends”, Nature Materials, 7, 547-550, 2008.
[15] K. Myny, S. Steudel, S. Smout, P. Vicca, F. Furthner, B. V. D. Putten, A. K.Tripathi, G. H. Gelinck, J. Genoe, W. Dehaene, P. Heremans, “Organic RFID transponder chip with data rate compatible with electronic product coding”, Organic Electronics, 11, 1176-1179, 2010.
[16] P. Lin, F.Yan, “Organic thin-film transistors for chemical and biological Sensing”, Advanced Materials, 24, 34-51, 2012.
[17] D. Li, E. J. Borkent, R. Nortrup, H. Moon, H. Katz, Z. Bao, “Humidity effect on electrical performance of organic thin-film transistors”, Applied Physical Letters, 86, 042105, 2005.
[18] W. Y. Lee, J. H. Oh, S. L. Suraru, W. C. Chen, F. Wurthner, Z. Bao, “High-mobility air-stable solution-shear-processed n-channel, organic transistors based on core-chlorinated naphthalene diimides”, Advanced Functional Materials, 21, 4173-4181, 2011.
[19] J. Cornil, J. L. Bredas, J. Zaumseil, H. Sirringhaus, “Ambipolar transport in organic conjugated materials”, Advanced Materials, 19, 1791-1799, 2007.
[20] A. Facchetti, M. H. Yoon, T. J. Marks, “Gate dielectrics for organic field-effect transistors:New opportunities for organic electronics”, Advanced Materials, 17, 1705-1725, 2005.
[21] E. J. Meijer, D. M. De Leeuw, S. Setayesh, E. V. Veenendaal, B. -H. Huisman, P.M.W.Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk, “Solution-processed ambipolar organic field-effect transistors and inverters”, Nature Materials, 2, 678-682, 2003.
[22] K. Yamane, A. Sawamoto, S. Hotta, H. Yanagi, “Organic heterojuntion ambipolar field effect transistors with asysmmetric source and drain electrodes”, Thin Solid Films, 516, 2758-2761, 2008.
[23] S. R. Saudari, Y. J. Lin, Y. Lai, C. R. Kagan, “Device Configurations for Ambipolar transport in flexible, pentacene transistors”, Advanced Materials, 22, 5063-5068, 2010.
[24] W. J. Yu, U. J. Kim, B. R. Kang, II. H. Lee, E. H. Lee, Y. H. Lee, “Adaptive logic circuits with doping-free ambipolar carbon nanotube transistors”, Nano Letters, 9, 1401-1405, 2009.
[25] E. B. Namdas, B. B. Y. Hsu, J. D. Yuen, I. D. W. Samuel, A. J. Heeger, “Optoelectronic gate dielectrics for high brightness and high-efficiency light-emitting transistors”, Advanced Materials, 23, 2352-2356, 2011.
[26] L. Jiang, J. Zhang, D. Gamota, C. G. Takoudis, “Organic thin film transistors with novel thermally cross-linked dielectric and printed electrodes on flexible substrates”, Organic Electronics, 11, 959-963, 2010.
[27] G. Horowitz, “Organic field-effect transistors”, Advanced Materials, 10, 365-377, 1998.
[28] R. Schmechel, M. Ahles, H. V. Seggem, “A pentacene ambipolar transistor : Experiment and theory”, Journal of Applied Physics, 98, 084511, 2005.
[29] W. C. Wang, C. H. Wang, J. Y. Lin, J. Hwang, “Thermal expansion coefficient considerations on field-effect mobility of pentacene organic thin-film transistors with an AIN gate dielectric”, IEEE Transactions on electron device, 59, 225-229, 2012.
[30] J. E. Mark, “Polymer data handbook”, Oxford University Press, 1999.
[31] H. Tada, A. E. Kumpel, R. E. Lathrop, J. B. Slanina, “Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures”, Journal of Applied Physics, 87, 4189-4193, 2000.
[32] M. H. Yoon, C. Kim, A. Facchetti, T. J. Marks, “Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors”, Journal of American Chemical Society, 128, 12853-12869, 2006.
[33] C. Yang, Y. Kwack, S. H. Kim, T. K. An, K. Hong, S. Nam, M. Park, W. S. Choi, C. E. Park, “Ambipolar thin-film transistors and an inverter based on pentacene/self-assembled monolayer modified ZnO hybrid structures for balanced hole and electron mobilities”, Organic Electronics, 12, 411-418, 2011.
[34] V. Coropceanu, J. Comil, D. A. D. A. Filho, Y. Olivier, R. Silbey, J. L. Bredas, “Charge transport in organic semiconductors”, Chemical Reviews, 107, 926-952, 2007.
[35] X. Sun, L. Zhang, C. Di, Y. Wen, Y. Guo, Y. Zhao, G. Yu, Y. Liu, “Morphology optimization for the fabrication of high mobility thin-film transistors”, Advanced Materials, 23, 3128-3133, 2011.
[36] S. J. Kang, M. Noh, D. S. Park, H. J. Kim, C. N. Whang, “Influence of postannealing on polycrystalline pentacene thin film transistor”, Journal of Applied Physics, 95, 2292-2296, 2004.
[37] J. Jang, S. Nam, D. S. Chung, S. H. Kim, W. M. Yun, C. E. Park, “High Tg cyclic olefin copolymer gate dielectrics for N, N’-ditridecyl perylene diimide based field-effect transistors: Improving performance and stability with thermal treatment”, Advanced Functional Materials, 20, 2611-2618, 2010.
[38] M. Kraus, S. Haug, W. Brutting, A Opitz, “Achievement of balanced electron and hole mobility in copper-phthalocyanine field-effect transistors by using a crystalline aliphatic passivation layer”, Organic Electronics, 12, 731-735, 2011.
[39] A. Wang, I Kymissis, V. Bulovic, A. I. Akinwande, “Tunable threshold voltage and flatband voltage in pentacene field effect transistor”, Applied Physical Letters, 89, 112109, 2006.
[40] T. Jentzsch, H. J. Juepner, K.-W. Brzezinka, A. Lau, “Efficiency of optical second harmonic generation from pentacene films of different morphology and structure”, Thin Soild Film, 315, 273-280, 1998.
[41] O. Kwon, V. Coropceanu, N. E. Gruhn, J. C. Durivage, J. G. Laquindanum, H. E. Katz, J. Cornil, J. L. Bredas, “Characterization of the molecular parameters determining charge transport in anthradithiophene”, Journal of Chemical Physics, 120, 8186, 2004.
[42] H. L. Cheng, W. Y. Chou, C. W. Kuo, F. C. Tang, “Electric field-induced structural changes in pentacene-based organic thin-film transistors studied by in situ micro-Raman spectroscopy”, Applied Physical Letters, 88, 161918, 2006.
[43] H. L. Cheng, W. Y. Chou, C. W. Kuo, Y. S. Mai, F. C. Tang, S. H. Lai, “Studies of polycrystalline pentacene thin-film transistors at the microscopic level”, Proc. of SPIE., 48, 6336, 2006.
[44] J. A. Last, A. C. Hiller, D. E. Hooks, J. B. Maxson, M. D. Ward, “Epitaxially driven assembly of crystalline molecular films on ordered substrates”, Chemistry of Materials, 10, 422, 1998.
[45] H. L. Cheng, W. Y. Chou, C. W. Kuo, Y. W. Wang, F. C. Tang, S. W. Chu, “Influence of electric field on microstructures of pentacene thin films in field-effect transistors”, Advanced Functional Materials, 18, 285-293, 2008.
[46] P. F. Barbara, T. J. Meyer, M. A. Ratner, “Contemporary issues in electron transfer research”, Journal of Physical Chemistry, 100, 13148-13168, 1996.
[47] A. Dodabalapur, J. Baumbach, K. Baldwin, H. E. Katz, “Hybrid organic/inorganic complementary circuits”, Applied Physical Letters, 68, 2246-2248, 1996.
[48] A. Dodabalapur, J. Laquindanum, H. E. Katz, Z. Bao, “Complementary circuits with organic transistors”, Applied Physical Letters, 69, 4227-4229, 1996.
[49] D. Bode, C. Rolin, S. Schols, M. Debucquoy, S. Steudel, G. H. Gelinck, J. Genoe, P. Heremans, “Noise-margin analysis for organic thin-film complementary technology”, IEEE Transactions on Electron Devices, 57, 201-208, 2010.
[50] S. R. Saudari, Y. J. Lin, Y. Lai, C. R. Kagan, “Device configurations for ambipolar transport in flexible, pentacene transistor”, Advanced Materials, 22, 5063-5068, 2010.
[51] 郭子豪, 雙極性有機場效電晶體應用於互補式反向器之研究, 國立成功大學, 2011.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-07-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-07-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw