進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1007201216000100
論文名稱(中文) 矽或鎂摻雜於錳中間能帶氮化鎵太陽能電池之效應探討
論文名稱(英文) The effect of Si or Mg doping on GaN Solar Cells with Mn-related Intermediate Band
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 100
學期 2
出版年 101
研究生(中文) 黃崇銘
研究生(英文) Chong-Ming Huang
學號 L76994269
學位類別 碩士
語文別 中文
論文頁數 133頁
口試委員 指導教授-許進恭
口試委員-賴韋志
召集委員-許晉瑋
口試委員-許世昌
中文關鍵字 氮化鎵  中間能帶太陽能電池  蕭基光偵測器 
英文關鍵字 GaN  intermediate band solar cell  Schottky photodetector 
學科別分類
中文摘要 中間能帶太陽能電池除了能夠透過其中間能帶增加短路電流且不降低其開路電壓等優點之外,其光電轉換效率在理論預測上更是超越單一接面的太陽能電池。
本論文中,將分為兩大部分,第一部份為矽或鎂摻雜於錳中間能帶氮化鎵太陽能電池之效應探討;第二部分具氮化鎵錳覆蓋層之蕭基光偵測器之研究。在太陽能電池方面,主動層為氮化鎵錳共摻雜鎂分為兩種結構,一種是以p型氮化鋁鎵為阻擋層,另一種則是以p型氮化鎵作為阻擋層。為了更了解中間能帶的躍遷機制,設計了氮化鎵錳共摻雜矽的主動層。經由光響應量測後,發現氮化鎵錳在共摻雜鎂或矽前後之響應曲線,具有截然不同的響應表現。其三階響應的現象,希望透過此共摻雜矽或鎂,使太陽能電池能夠增加吸收,增加其產生的光電流。實驗的結果和理論機制將在論文中一併說明。
第二部分,則在未摻雜的氮化鎵上,探討不同錳流量的氮化鎵錳覆蓋層對蕭基光偵測器的影響。透過量測蕭基能障,暗電流,光電流及光響應,其實驗結果將在本論文裡做一個詳細的比較與分析。
英文摘要 The intermediate band solar cell is a theoretical concept with the potential for exceeding the performance of conventional single-gap solar cells by enhancing its photo-current via the two step absorption of sub-band gap photons, without reducing its output voltage. The thesis is divided into two parts, one is the study of Si or Mg doping on GaN Solar Cells with Mn-related Intermediate Band, and another one is the study of GaN Schottky-barrier photodetectors with GaN: Mn cap layer. In the study of GaN: Mn co-doping Mg intermediate band solar cell, two types of structure: solar cell with p-AlGaN blocking layer, solar cell with p-GaN blocking layer. In order to realize intermediate band mechanism, we design another structure GaN: Mn co-doping Si of active layer. Compared with Mn-doped GaN-based solar cell, the responsivity spectrum of GaN: Mn co-doping Mg or Si based solar cell had different performance. Mn-doped GaN-based solar cell and GaN: Mn co-doping Mg or Si based solar cell exhibits three-step-responsivity characteristics. Expect that the impurity band of GaN: Mn co-doping Mg or Si could contribute more photocurrent by sunlight. The experiment result and the theoretically mechanism were studied in this thesis.
For the second part, we focus on the u-GaN with different flow rate of GaN: Mn cap layers to fabricate Schottky diode photodetectors. In the text, we selected Ni/Au film as Schottky contact to be evaporated on the structure. After measurement, Schottky barrier height、dark current、photo current and responsivity are determined separately and compared in the different structures.
論文目次 摘要 II
ABSTRACT III
致謝 IV
目錄 V
圖目錄 IX
表目錄 XV
第一章 序論 1
1.1中間能帶太陽能電池簡介 1
1.2氮化鎵材料摻雜錳背景介紹[6] 2
1.3氮化鎵為基底材料光偵測器簡介[6] 4
1.4研究動機與論文架構 6
參考文獻 8
第二章 理論背景與文獻回顧 11
2.1氮化鎵摻雜錳理論[1] 11
2.2中間能帶太陽能電池原理[10] 12
2.3太陽能電池原理[12] 14
2.3.1太陽能電池之光電特性[12][13] 15
2.3.2太陽能效率相關參數[13] 17
參考文獻 21
第三章 元件結構及製程 24
3.1氮化鎵錳共摻雜鎂或矽中間能帶太陽能電池結構設計 24
3.2氮化鎵錳共摻雜鎂或矽中間能帶太陽能電池製程步驟 26
3.3量測儀器與製程機台介紹[1][2] 29
參考文獻 31
第四章 量測結果與討論 34
4.1共摻雜鎂於錳中間能帶太陽能電池(p-AlGaN) 35
4.1.1穿透率分析 35
4.1.2漏電流分析 36
4.1.3太陽能電池光電轉換特性分析 36
4.1.4太陽能電池光響應頻譜分析 37
4.2共摻雜鎂於錳中間能帶太陽能電池(p-GaN) 39
4.2.1穿透率分析 39
4.2.2漏電流分析 40
4.2.3太陽能電池光電轉換特性分析 41
4.2.4太陽能電池光響應頻譜分析 42
4.3共摻雜矽於錳中間能帶太陽能電池(p-GaN) 44
4.3.1穿透率分析 44
4.3.2漏電流分析 45
4.3.3太陽能電池光電轉換特性分析 46
4.3.4太陽能電池光響應頻譜分析 47
4.4共摻雜鎂或矽中間能帶太陽能電池綜合比較分析 49
參考文獻 92
第五章 附錄:具氮化鎵錳披覆層蕭基光偵測器 93
5.1金屬-半導體之蕭基光偵測器原理[18][19][20] 93
5.1.1金屬-半導體之蕭基能障理論 93
5.1.2金半蕭基光偵測器原理[17] 96
5.2光偵測器之量子效率(Quantum efficiency)與吸收係數(Aborption coefficient)[1][12][20] 98
5.3 光偵測器之光響應度(Responsivity) [16][17][21] 100
5.4具氮化鎵錳覆蓋層蕭基光偵測器結構設計 101
5.5具氮化鎵錳覆蓋層蕭基光偵測器製程步驟 102
5.6具氮化鎵錳覆蓋層與無氮化鎵錳覆蓋層之電性分析 106
5.7具氮化鎵錳覆蓋層與無氮化鎵錳覆蓋層之光響應比較分析 107
5.8氮化鎵錳覆蓋層之蕭基能障量測 108
5.8.1電流電壓法 108
5.8.2電容電壓法 111
5.8.3蕭特基障礙高度(ΦB)計算方式的差異 113
參考文獻 128
第六章 結論與未來展望 130
參考文獻 133

參考文獻 第一章 參考文獻
[1] 楊素華, 蔡泰成, 科學發展第390期,50~55頁,2005.
[2] 馬志華, “雜質帶太陽能電池研究”, 中國科學院半導體研究所, 中國集成電路-產業發展, (2008).
[3] Green, M.A., Third generation photovoltaics:Ultra—high conversion efficiency at low cost.Progress in Photovohaics:Research and Applications,200 1.9(2):P.123-135.
[4] Luque,A.and A.Mart,Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels.Physical Review Letters,1997.78 (26):P.5014.
[5] Wang, W.M., A.S. Lin, and J.D. Phillips,Intermediate ——band Photovohaics solar cell based O13 ZnTe:O.Applied Physics Letters 2009.95(1):P.3.
[6] 郭翔維, “氮化鎵摻雜錳應用於蕭基光偵測器及太陽能電池之研究”, 國立成功大學光電科學與工程研究所, 碩士論文, (2010).
[7] M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, M. K. Ritums, and M. J. Reed, “Room temperature ferromagnetic properties of (Ga, Mn) N”, Appl. Phys. Lett. vol. 79, pp. 3473, (2001).
[8] F. E. Arkun, M. J. Reed, E. A. Berkman, and N. A. El-Masry, “Dependence of ferromagnetic properties on carrier transfer at GaMnN/GaN: Mg interface”, Appl. Phys. Lett. vol. 85, pp. 3809, (2004).
[9] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN: Mn”, Appl. Phys. Lett. 80, pp. 1731, (2002).
[10] T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann, and O. Ambacher, “The Mn3+/2+ acceptor level in group III nitrides”, Appl. Phys. Lett. vol. 81, pp. 5159, (2002).
[11] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy”, Physical B. vol. 308, pp. 30, (2001).
[12] N. Nepal, Arm M. Mahros, S. M. Bedair, N. A. El-Masry, and J. M. Zavada, “Correlation between photoluminescence and magnetic properties of GaMnN films”, Appl. Phys. Lett. vol. 91, pp. 242502, (2007).
[13] Antonio Luque and Antonio Martı´, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels”, Phys. Rev. Lett. Vol. 78, pp. 26, (1997).
[14] L.Cuadra, A. Martı’, A.Luque, “Present status of intermediate band solar cell research”, Thin Solid Films, 451-452, 593-599, (2004).
[15] A.Martı´, C.Tablero, E.Antolı´n, A.Luque, R.P.Campion, S.V.Novikov, C.T.Foxon, “Potential of Mn doped In1-XGaXN for implementing intermediate band solar cells”, Solar Energy Materials & Solar Cells, 93, (2009), 641-644.
[16] M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van hove, M. Blasingame and L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers”, Appl. Phys. Lett., vol. 60, p. 2917, 1992.
[17] E. Monroy, E. Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumout, P. Gibart, J. A. Muñoz, and F. Cussó, “High-performance GaN p–n junction photodetectors for solar ultraviolet applications”, Semicond. Sci . Technol., vol. 13, p. 1042, 1998.
[18] G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, and U. K. Mishra, “High performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN”, Appl. Phys. Lett., vol. 75, p. 247, 1999.
[19] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez, and M.Razeghi, “High quality visible-blind algan p–i–n photodiodes”, Appl. Phys. Lett., vol. 74, p. 1171, 1999.
[20] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov, and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection”, Appl. Phys. Lett., vol. 70, p. 2277, 1997.
[21] Z. C. Huang, J. C. Chen, and D. Wickenden, “Characterization of GaN using thermally stimulated current and photocurrent spectroscopies and its application to UV detectors”, J. Cryst. Growth , vol. 170, p. 362, 1997.
[22] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J.K . Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts”, IEEE Photon. Technol. Lett., vol. 13, p. 848, 2001.
[23] 林玉晟, “探討侷域性表面電漿子應用於氮化銦鎵系列光偵測器之影響”,國立成功大學光電科學與工程研究所, 碩士論文, (2010).

第二章 參考文獻
[1] 劉宇軒, “錳摻雜於氮化鎵系列材料之光電特性研究與元件應用”, 國立成功大學光電科學與工程研究所, 碩士論文, (2008).
[2] N. Theodoropoulou, A. F. Hebard, M. E. Overberg, C. R. Abernathy, S. J. Pearton, S. N. G. Chu, and R. G. Wilson, “ Magnetic and structural properties of Mn-implanted GaN”, Appl. Phys. Lett. 78, p. 3475 (2001).
[3] P. Boguslawski and J. Bernholc, “ Fermi-level effects on the electronic structure and magnetic couplings in (Ga,Mn)N”, Phys. Rev. B 72, 115208, (2005).
[4] N. Nepal, Amr M. Mahros, S. M. Bedair, N. A. El-Masry, and J. M. Zavada, “Correlation between photoluminescence and magnetic properties of GaMnN films”, Appl. Phys. Lett. vol. 91, pp. 242502, (2007).
[5] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn”, Appl. Phys. Lett. vol. 80, pp. 1731, (2002).
[6] T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann, and O. Ambacher, “ The Mn3+/2+ acceptor level in group III nitrides”, Appl. Phys. Lett. vol. 81, p. 5159, (2002).
[7] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy”, Physica B vol. 308, pp. 30, (2001).
[8] F. E. Arkun, A. M. Mahros, N. A. El-Masry, J. Muth, X. Zhang, J. M. Zavada, and S. M. Bedair, Materials Research Society Symposia Proceedings vol. 955 (Materials Research Society, Pittsburgh, 2006), p.0955-I07-02.
[9] S. M. Sze, “SEMICONDUCTOR DEVICE Physics and Technology 2nd Edition, WILEY”, p. 33, (2001).
[10] 岡田至崇, “中間バンド型太陽電池の現状と課題”, 東京大學先端科学技術研究センター, Powerpoint, (2009).
[11] Luque,A.and A.Mart,Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels.Physical Review Letters,1997.78 (26):P.5014.
[12] 施敏, 半導體元件物理與製作技術, 國立交通大學出版社, 2002.
[13] 黃泯舜, “提升氮化銦鎵太陽能電池轉換效率之研究”, 國立成功大學光電科學與工程研究所, 碩士論文, (2008).
[14] 紀國鐘, 蘇炎坤, 光電半導體技術手冊, 台萬電子材料與元件協會出版, 2002.
[15] Dieter K. Schroder, “Semiconductor material and device
characterization”, A Wiley-Interscience Publication, chap. 3, (1998).
[16] S. M. Sze, “SEMICONDUCTOR DEVICE Physics and Technology 2nd Edition”, WILEY, chap.7.1, (2001)
[17] D. A. Neamen, “半導體物理與元件(三版)” 麥格羅希爾出版, chap.9.1, (2003)
[18] S. M. Sze, Semiconductor Device Physics and Technology, pp. 278
(1985)
[19] M.Sze, D. J. Coleman, JR. and A. Loya, Solid-State Electronics,
“Current Transport in Metal-Semiconductor-Metal (MSM) structures”, Vol. 14, pp. 1209 (1971)
[20] 郭翔維, “氮化鎵摻雜錳應用於蕭基光偵測器及太陽能電池之研究”, 國立成功大學光電科學與工程研究所, 碩士論文, (2010).
[21] S. M. Sze, “SEMICONDUCTOR DEVICE Physics and Technology 2nd Edition, WILEY”, p. 314, (2001).

第三章 參考文獻
[1] 黃泯舜, “提升氮化銦鎵太陽能電池轉換效率之研究”, 國立成功大學光電科學與工程研究所, 碩士論文, (2008).
[2] 郭翔維, “氮化鎵摻雜錳應用於蕭基光偵測器及太陽能電池之研
究”, 國立成功大學光電科學與工程研究所, 碩士論文, (2010).

第四章 參考文獻
[1] M. Hansen, J. Piprek, P. M. Pattison, J. S. Speck, S. Nakamura, and S.P. DenBaars, “Higher efficiency InGaN laser diodes with an improved quantum well capping configuration,” Appl. Phys. Lett.,
vol. 81, pp. 4275–4277, 2002.
[2] K. Iga, H. Uenohara, and F. Koyama, “Electron reflectance of multiquantum barrier (MQB),” Electron. Lett., vol. 22, pp.1008–1010, 1986.
[3] A. Luque and A. Martı´, Progress in Photovoltaics:Research and
Applications 9, 73 (2001).

第五章 參考文獻
[1] ”Semiconductor Physics and Devices” by Donald A. Neamen, third edition , Chapter 9, “Metal-Semiconductor and Semiconductor Heterojunctions”
[2] C. Schmitz, A. T. Ping, M. Asif Khan, Q. Chen, J. W. Yang, and I. Adesida, ”Metal Contacts to n-Type GaN ”,Journal of Electronic Materials, Vol.27,No.4(1998)
[3] T.Noguchi,M.Kitugawa,and I.Taniguchio,Negative capacitance of silicon diodes with deep level traps,Jpn.J.J.Appl.Phys.1980,19,1423—1425
[4] C.H.Champness and w.R.Clark.,Anomalous inductive effect in selenium schottky diodes,Appl.Phys.Lett.,1990,s6(12),1104-1106
[5] H.Morkoc, S.Strite, G.B.Gao,M.E.LinB. Suerdlov, and M.Burns J.Appl.Phy. 76,1363 (1994)
[6] P. Hacke, T. Detchprohm, K. Hiramatsu, and N. Sawaki, Appl. Phys. Lett. 63,2676 (1993)
[7] L. Wang, M. I. Nathan, T.-H. Lim, M. A. Khan, and Q. Chen, Appl. Phys. Lett. 68, 1267 (1996)
[8] S. N. Mohammad, Z. Fan, A. E. Botchkarev, W. Kim, O. Aktas, A. Salvador, and H. Morkoc¸, Electron. Lett. 32,598(1996)
[9] T. Ping, A. C. Schmitz, M. A. Khan, and I. Adesida, Electron. Lett. 32, 68 (1996)
[10] J. I. Pankove and H. E. P. Schade, Appl. Phys. L&t. 25, 53 (1974).
[11] Osvald, J., Kuzmik, J., Konstantinidis, G., Lobotka, P. and Georgakilas, A.,Temperature dependence of GaN Schottky diodes I-V characteristics, Microelectronic Engineering, 81: 181-187 (2005).
[12] D.R. Eastham, Phys. Rev. B 2 (1970) 1–2.
[13] J.I. Pankove, H. Schade, Appl. Phys. Lett. 25 (1974) 53–55.
[14] John Bardeen, Phys. Rev. 71, 717 (1947).
[15] J. M. Woodall, G. D. Pettit, T. N. Jackson, and C. Lanza, “Fermi-Level Pinning by Misfit Dislocations at GaAs Interfaces,” Phys. Rev. Lett. 51,1783 (1983).
[16] 劉宇軒, “錳摻雜於氮化鎵系列材料之光電特性研究與元件應用”, 國立成功大學光電科學與工程研究所, 碩士論文, (2008).
[17] 施敏, 半導體元件物理與製作技術, 國立交通大學出版社, 2002.
[18] Dieter K. Schroder, “Semiconductor material and device
characterization”, A Wiley-Interscience Publication, chap. 3, (1998).
[19] S. M. Sze, “SEMICONDUCTOR DEVICE Physics and Technology 2nd Edition”, WILEY, chap.7.1, (2001)
[20] D. A. Neamen, “半導體物理與元件(三版)” 麥格羅希爾出版, chap.9.1, (2003)
[21] 郭翔維, “氮化鎵摻雜錳應用於蕭基光偵測器及太陽能電池之研究”, 國立成功大學光電科學與工程研究所, 碩士論文, (2010).
[22] S. M. Sze, “SEMICONDUCTOR DEVICE Physics and Technology 2nd Edition, WILEY”, p. 314, (2001).

第六章 參考文獻
[1] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
[2] T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B 63, 195205 (2001).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-07-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw