進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1007201215355000
論文名稱(中文) 屏東平原及蘭陽平原的全新世河流沉積學
論文名稱(英文) Holocene fluvial sedimentology of the Pingtung and Ilan Plain
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 100
學期 2
出版年 101
研究生(中文) 張致翰
研究生(英文) Chih-Han Chang
學號 l46981024
學位類別 碩士
語文別 中文
論文頁數 165頁
口試委員 指導教授-袁彼得
口試委員-楊耿明
口試委員-林殿順
中文關鍵字 屏東平原  蘭陽平原  沉積學  辮狀河  疊加形式  單層  多層  洪氾事件  沉積速率 
英文關鍵字 Pingtung Plain  Ilan Plain  sedimentology  braided river  stacking pattern  single storey  multistorey  flood event  sedimentation rate 
學科別分類
中文摘要 本研究分析屏東平原及蘭陽平原各長200m之沉積物岩心,並合併前人研究成果,以探討屏東平原及蘭陽平原一萬年來的洪氾事件及沉積環境之時空演化,並計算沉積速率,探討不等量沉降的原因,最後建立河道疊加形式、海面升降及平均沉積速率三者的關係。
根據鑽井沉積物的粒徑、沉積構造及組織等特徵,本研究的岩心可劃分出10種岩相(包括一種礫相、五種砂相、四種泥相)及四種岩相組合,分別代表辮狀河的四種次沉積環境:縱向礫石洲(longitudinal bar)、砂質河道(sandy channel)、決口扇(crevasse splay)及氾濫平原(floodplain)。
屏東平原6口岩心底部常為氾濫平原泥層,其上覆蓋多層砂質河道沉積物夾薄氾濫平原泥層,偶爾出現1m厚縱向礫石洲之顆粒支持礫石層。此礫石層大多出現在鑽井上部,並常覆蓋在氾濫平原泥層上,代表水流能量變化大的洪氾事件。
蘭陽平原4口岩心以疊置多次縱向礫石洲之顆粒支持礫石為主,僅在天送埤鑽井底部出現氾濫平原泥層夾砂質河道砂層,代表河道遷移、水流能量變小之沉積物。
綜合本研究屏東平原6口鑽井岩心及地調所岩心資料,發現屏東平原10,000年以來沉積物主要由東邊之中央山脈往西搬運,且6,000年以來至少有兩次大規模洪氾事件;蘭陽平原4口鑽井岩心及地調所已有岩心資料,顯示蘭陽平原沉積物主要由西往東搬運,且5000年來至少發生三次大規模洪氾事件。
本研究共定年泥層碳化木樣品8件,分別取自屏東平原鹿寮、富田、竹田及美和等4口鑽井。樣本採自岩心之泥層。結果顯示20m~37m處地層的年齡為6,000 BP至7,400 BP,平均沉積速率為每千年3~5公尺。蘭陽平原4口岩心則無定年資料。
合併本研究與前人研究結果,發現屏東平原沉積速率由平原中心往東、西兩側遞減,可能與冰期蝕谷與屏東向斜軸線位於平原中心,在中心提供較多沉積空間有關;且沉積速率有向南增加的趨勢,可能為古地形面往南傾斜,使南方有較厚沉積物堆積。
蘭陽平原沉積速率由平原中心往南、北遞減,可能因冰期蝕谷位於平原中心,及沖繩海槽向西擴張的結果;且往東沉積速率上升,可能因古地形面往東傾斜,海水面上升提供沉積空間。
屏東平原及蘭陽平原10,000 BP至7,000 BP之沉積速率,皆大於7,000 BP至今之平均沉積速率。此結果可能與末次冰期後全球海水面上升,沉積空間逐漸減少有關。此現象也與沉積環境的分析有相同結果:岩心底部以氾濫平原泥層為主的單層河道砂層堆積,代表海進時沉積容納空間產生速率快,解釋為進夷體系域;岩心上部的多層河道砂體夾薄氾濫平原沉積物,代表海面停止上升、沉積空間產生速率慢,解釋為高位體系域。
英文摘要 For a better understanding on the sedimentary environment evolution and major flood events occurred since 10,000 BP on the Pingtung and Ilan Plains, ten cores with a total length of 400 m were analyzed. The sedimentation rates were then calculated in an attempt to correlate with global base-level change. Furthermore, the relationship between fluvial stacking pattern, sea-level change and sedimentation rate in these areas were also reconstructed.
Based on the characteristics of core sediments, such as grain size and sedimentary structures, 10 lithofacies (1 gravel facies, 5 sand facies and 4 mud facies) are identified, and can be grouped into 4 facies assemblages. They represent four braided river sub-environments: longitudinal bar, sandy channel, crevasse splay and floodplain.
The lower part of the six Pingtung Plain cores is dominated by floodplain mud, overlain by multistory channel sands and thin floodplain mud layers. In places in the upper core, 1m-thick longitudinal clast-supported gravel beds overlay the floodplain mud, which is interpreted as high-energy flood deposits.
The four Ilan Plain cores consist of amalgamated-clast supported gravel of longitudinal bars. But at the bottom of the Tian Song Pi core, floodplain muds interbed with channel sands, which probably represent low-energy fine-grained deposits during formed channel migration.
Combining results obtained from this study and previous research in the Pingtung Plain, it is suggested that the sediments were transported westward from Central Ridge since 10,000 BP, and there were at least two major flood events since 6,000 BP. In the Ilan Plain, the sediments were transported eastwardly, and three major flood events in the last 5,000 years have been recorded.
Eight wood fragments were collected from mud beds for dating from 4 Pingtung Plain cores: Lu Liao, Fu Tian, Zhu Tian and Mei Her. The age of beds at 20~37 m ranges from 6,000 BP to 7,400 BP, giving an average sedimentation rate of 3~5 m per 1,000 years. There is no age dates in Ilan Plain cores.
The average sedimentation rates decrease both eastward and westward from the central Pingtung Plain, and reach the maximum southward toward the shoreline. The variation in sedimentation rates are possibly resulted from both tectonic and palaeotopographic controls: high accommodation created by an incised valley since the Last Glacial maximum and the development of Pingtung syncline in the central plain, and a southward tipping of the deposition surface.
The sedimentation rates decrease both northward and southward from the central Ilan Plain. It may result from the extra accommodation space generated by an incised valley and the Okinawa Trough. And the eastward increase in sedimentation rate might also be caused by the tilting of the deposition surface in the same direction.
The sedimentation rates between 10,000 BP and 7,000 BP are greater than those from 7,000 BP to the Present in both study areas, which might be related to the sea-level rise after the Last Glacial. The higher sedimentation rate and floodplain-dominated mud with single-storey (isolated) channel sands in the lower part of the cores (10,000 BP to 7,000 BP) suggest deposition during rising sea level and higher rates of generation in accommodation, which in turn is interpreted as a transgressive systems tract.
The upper part of cores (between 7,000 BP and present) is dominated by amalgamated multistorey channel sands. And the lower sedimentation rates in this interval suggest a reduction in accommodation space during sea-level highstand, and probably represent a highstand systems tract.
論文目次 摘要 I
Abstract III
致謝 VI
目錄 VIII
表目錄 XII
圖目錄 XIII
第一章、緒論 1
1.1 研究目的 1
1.2 鑽井位置 2
1.2.1 屏東平原 2
1.2.2 蘭陽平原 4
1.3 研究區域地質背景 6
1.3.1 屏東平原 6
1.3.1.1 地形 6
1.3.1.2 地質 6
1.3.1.3 沉積物來源 8
1.3.2 蘭陽平原 11
1.3.2.1 地形 11
1.3.2.2 地質 11
1.4 前人研究 14
1.4.1 由盆地沉陷控制之河道疊加形式 14
1.4.1.1 羅馬尼亞Sânpetru Formation 14
1.4.1.2 加拿大Wolfville Formation 16
1.4.1.3 阿根廷Tordillo Formation 17
1.4.1.4 西班牙Iberian Basin地層 19
1.4.2 由海水面控制之河道疊加形式 22
1.4.2.1 西格林蘭Atane Formation 22
1.4.2.2 美國Wahweap Formation 23
1.4.2.3 加拿大Wapiti Formation 25
1.4.3 文獻統整 28
1.4.4 屏東平原沉積環境的研究 29
1.4.5 蘭陽平原沉積環境的研究 29
第二章、研究方法 31
2.1 岩心觀察與記錄 31
2.2 資料解釋 31
第三章、鑽井岩相描述及解釋 33
3.1 岩相分類 33
3.2 岩相組合與沉積環境 38
3.2.1 縱向礫石洲(longitudinal bar)岩相組合 39
3.2.2 砂質河道(sandy channel)岩相組合 40
3.2.3 決口扇(crevasse splay)岩相組合 41
3.2.4 氾濫平原(floodplain)岩相組合 42
3.3 岩心描述與解釋 44
3.3.1 屏東平原 44
3.3.1.1 鹿寮鑽井 44
3.3.1.2 富田鑽井 47
3.3.1.3 力社鑽井 50
3.3.1.4 台糖鑽井 53
3.3.1.5 竹田鑽井 56
3.3.1.6 美和鑽井 59
3.3.2 蘭陽平原 62
3.3.2.1 內城鑽井 62
3.3.2.2 萬富鑽井 64
3.3.2.3 楓林鑽井 66
3.3.2.4 天送埤鑽井 68
第四章、鑽井岩心對比與解釋 71
4.1 屏東平原 71
4.1.1剖面A:萬巒-鹿寮-潮州-台糖-崁頂-港東 71
4.1.2 剖面B:內埔-竹田-大湖-力社-新園 74
4.1.3 剖面C:清溪-西勢-富田-內埔-美和-萬巒 77
4.1.4 剖面A、B、C綜合分析 80
4.2 蘭陽平原 81
4.2.1 剖面A:自強-紅柴林-內城-深溝-凱旋-公館 81
4.2.2 剖面B:天送埤-三星-楓林-萬富-大洲-中興-大錦閘 83
4.2.3 剖面C:吳沙-黎明-凱旋-中興-順安 85
4.2.4 剖面A、B、C綜合分析 87
第五章、平均沉積速率對比 88
5.1 屏東平原 88
5.1.1 剖面A平均沉積速率 90
5.1.2 剖面B平均沉積速率 92
5.1.3 剖面C平均沉積速率 94
5.1.4 剖面A、B、C沉積速率綜合分析 96
5.2 蘭陽平原 100
5.2.1 剖面A平均沉積速率 102
5.2.2 剖面B平均沉積速率 103
5.2.3 剖面C平均沉積速率 105
5.2.4 剖面A、B、C沉積速率綜合分析 106
第六章、結果與討論 109
6.1 研究限制 109
6.2 岩心解釋之疑慮 110
6.3 全球海水面變化對沉積環境的影響 111
6.4 屏東平原沉積環境之演化 114
6.5 蘭陽平原沉積環境之演化 118
第七章、結論 122
參考文獻 124
附錄一、屏東平原鑽井岩心照片 134
附錄二、蘭陽平原鑽井岩心照片 149
附錄三、定年資料 165
參考文獻 中文部分
中央地質調查所 (1998) 五萬分之一台灣地質圖,圖幅第六十一號,高雄圖幅。
中國石油股份有限公司 潮州一號井、屏東一號井、大寮一號井、鳳山一號井,未發表資料。
江崇榮、賴典章、陳文政、費立沅、侯進雄、黃智昭、陳瑞娥、陳利貞、賴慈華、呂學、陸挽中、周素卿 (2002) 台灣地區地下水觀測網第一期計畫,屏東平原,水文地質調查總報告。經濟部中央地質調查所,共172頁。
吳樂群 (1996) 台灣區地下水觀測網第一期計畫,水文地質調查研究及建檔八十五年度報告,屏東平原沉積物與沉積環境分析及地層對比研究:中央地質調查所,共95頁。
吳樂群 (1997) 台灣區地下水觀測網第一期計畫,水文地質調查研究及建檔八十六年度報告,屏東平原沉積物與沉積環境分析及地層對比研究:中央地質調查所,共90頁。
吳樂群 (1998) 台灣區地下水觀測網第一期計畫,水文地質調查研究及建檔八十七年度報告,屏東平原沉積物與沉積環境分析及地層對比研究:中央地質調查所,共125頁。
吳樂群 (2002) 台灣地區地下水觀測網第二期計畫,水文地質調查研究九十一年度報告,沉積物與沉積環境分析及地層對比研究—嘉南平原及蘭陽平原:中央地質調查所,共84頁。
林朝棨 (1957) 台灣地形。台灣文獻委員會,台灣省通誌稿,卷一,第一冊,共423頁。
徐澔德 (1999) 上次冰期以來屏東平原南部之沉積環境。國立台灣大學地質科學研究所碩士論文,共212頁。
袁彼得、鄧屬予、林泗濱 (1995) 台灣區地下水觀測網第一期計畫,水文地質調查研究及建檔八十四年度報告,屏東平原沉積物及沉積環境分析及地層對比研究:中央地質調查所,共76頁。
張瑞津、石再添、楊淑君、林譽方、陳翰霖、董德輝 (1995) 蘭陽地區沖積扇的地形學研究。國立臺灣師範大學地理研究所地理研究報告,第23期,第151-191頁。
許華杞 (1987) 沖繩海槽南端與台灣宜蘭地區之地殼變動。測量工程,第二十九卷,第三期,第1-6頁。
陳文山 (2000) 沉積物與沉積環境分析及地層對比研究—蘭陽平原。經濟部中央地質調查所台灣地區地下水觀測網第二期計畫水文地質調查研究八十九年度報告,共48頁。
陳文山、宋時驊、吳樂群、徐澔德、楊小青 (2005) 末次冰期以來台灣海岸平原區的海岸線變遷。國立臺灣大學考古人類學刊,第62期,第40-55頁。
陳文山、楊志成、吳樂群、楊小青、陳勇全、顏一勤、劉立豪、黃能偉、林啟文、張徽正、石瑞銓、林偉雄 (2004) 沉降環境的山麓河谷地形特性-探討臺北盆地、蘭陽平原與屏東平原鄰近山麓地形與構造的關係,經濟部中央地質調查所彙刊,第十七號,第79-106頁。
陳文山、楊志成、楊小青 (2009) 如何建立台灣海岸平原區地下晚第四紀沉積層的地層架構。經濟部中央地質調查所特刊第二十二號,第101-114頁。
陸挽中、賴慈華、江崇榮 (1998) 屏東平原之長期沉陷速率。屏東平原地下水及水文地質研討會論文集,153-163頁。
黃朝恩 (1980) 台灣島諸流域特徵及其相關性的研究。私立中國文化學院地學研究所博士論文,共136頁。
蘇品如 (2009) 宜蘭蘭陽溪下游井下岩芯沉積環境分析。經濟部中央地質調查所97年度研究發展專題,經濟部中央地質調查所,共75頁。
蘇清全 (2011) 蘭陽平原末次冰期以來沉積環境變遷與構造作用特性。國立台灣大學地質科學研究所碩士論文,共129頁。

英文部分
Allen, J.R.L. (1978) Studies in fluviatile sedimentation: an exploratory quantitative model for the architecture of avulsion-controlled alluvial suites: Sedimentary Geology, v. 21, p. 129–147.
Amorosi, A. and Colalongo, M. (2005) The linkage between alluvial and coeval nearshore marine successions: evidence from the late Quaternary record of the Po River Plain, Italy, in Blum, M., Marriott, S., and Leclair, S., eds., Fluvial Sedimentology VII, International Association of Sedimentologists, Special Publication 35, p. 257–275.
Aslan, A. and Autin, W. (1999) Evolution of the Holocene Mississippi River floodplain, Ferriday, Louisiana; insights on the origin of fine-grained floodplains: Journal of Sedimentary Research, v. 69, p. 800–815.
Belt, E., Flores, R., Warwick, P., Conway, K., Johnson, K., and Waskowitz, R. (1984) Relationship of fluviodeltaic facies to coal deposition in the lower Fort Union Formation (Palaeocene), south-western North Dakota, in Rahmani, R., and Flores, R., eds., Sedimentology of Coal and Coal-Bearing Sequences, International Association of Sedimentologists, Special Publication 7, p. 177–195.
Blum, M. and Törnqvist, T. (2000) Fluvial response to climate and sea-level change: a review and look forward: Sedimentology, v. 47, p. 2–48.
Bohacs, K. and Suter, J. (1997) Sequence stratigraphic distribution of coaly rocks: fundamental controls and paralic examples: American Association of Petroleum Geologist, Bulletin, v. 81, p. 1612–1639.
Bridge, J.S. and Leeder, M.R. (1979) A simulation model of alluvial stratigraphy: Sedimentology, v. 26, p. 617–644.
Cant, D.J. (1978) Development of a facies model for sandy braided river sedimentation: comparison of the South Saskatchewan River and the Battery Point Formation. In: Miall, A.D. (Ed.), Fluvial Sedimentology. Memoir, vol. 5. Canadian Society of Petroleum Geologists, pp. 627–639.
Cant, D.J. and Walker, R.G. (1976) Development of a facies model for sandy braided-fluvial facies for the Devonian Battery Point Sandstone, Quebec. Canadian Journal of Earth Sciences 13, 102–119.
Cant, D.J. and Walker, R.G. (1978) Fluvial processes and facies sequences in the sandy braided South Saskatchewan River, Canada. Sedimentology 25, 625–648.
Church, J.A., Gregory, J.M., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M.T., Qin, D., and Woodworth, P.L. (2001) Changes in Sea Level. In Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P., Dai, X., Maskell, K., Johnson, C.I.(eds) Climate Change. The Scientific Basis.Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press, 639-694.
Gastaldo, R., Denko, T., and Liu, Y. (1993) Application of sequence and genetic stratigraphic concepts to carboniferous coal-bearing strata: an example from the Black Warrior Basin, U.S.A.: Geologische Rundschau, v. 82, p. 212–226.
Gibling, M.R. (2006) Width and thickness of fluvial channel bodies and valley fills in the geological record: a literature compilation and classification: Journal of Sedimentary Research, v. 76, p. 731–770.
Hamilton, D. and Tadros, N. (1994) Utility of coal seams as genetic stratigraphic sequence boundaries in nonmarine basins: an example from the Gunnedah Basin, Australia: American Association of Petroleum Geologists, Bulletin, v. 78, p. 267–286.
Heller, P.L. and Paola, C. (1996) Downstream changes in alluvial architecture: an exploration of controls on channel-stacking patterns: Journal of Sedimentary Research, v. 66, p. 297–306.
Hjellbakk, A. (1997) Facies and fluvial architecture of a high-energy braided river: the Upper Proterozoic Seglodden Member, Varanger Peninsula, northern Norway. Sedimentary Geology 114, 131-161.
Holbrook, J. (2001) Origin, genetic interrelationships, and stratigraphy over the continuum of fluvial channel-form bounding surfaces: an illustration from middle Cretaceous strata, southeastern Colorado: Sedimentary Geology, v. 144, p. 179–222.
Holz, M., Kalkreuth, W., and Banerjee, I. (2002) Sequence stratigraphy of paralic coal-bearing strata: an overview: International Journal of Coal Geology, v. 48, p. 147–179.
Jensen, M.A. and Pedersen, G.K. (2010) Architecture of vertically stacked fluvial deposits, Atane Formation, Cretaceous, Nuussuaq, central West Greenland. Sedimentology, 57, 1280-1314.
Jinnah, Z.A. and Robert, E.M. (2011) Facies associations, paleoenvironment, and base-level changes in the Upper Cretaceous Wahweap Formation, Utah, U.S.A. Journal of Sedimentary Research, 81, 266-283.
Kraus, M.J. (1987) Integration of channel and floodplain suites; II. Vertical relations of alluvial paleosols. J. Sedi. Petrol., 57, 602-612.
Kraus, M.J. and Aslan, A. (1993) Eocene hydromorphic paleosols: significance for interpreting ancient floodplain processes. J. Sedi. Petrol., 63, 453-463.
Kraus, M.J. (1997) Lower Eocene alluvial paleosols: Pedogenic development, stratigraphic relationships, and paleosol/landscape associations: palaeogeography, Palaeoclimatology, Palaeoecology 129, 387-406.
Kraus, M.J. (2002) Basin-scale changes in floodplain paleosols: implications for interpreting alluvial architecture. Journal of Sedimentary Research 72, 500-509.
Leeder, M.R. (1978) A quantitative stratigraphic model for alluvium, with special reference to channel deposit density and interconnectedness, in Miall, A.D., ed., Fluvial sedimentology: Canadian Society of Petroleum Geologists, Memoir, v. 5, p. 587–596.
Leleu, S., Lanen, X.M.T., and Hartley, A.J. (2010) Controls on the architecture of a Triassic sandy fluvial system, Wolfville Formation, Fundy Basin, Nova Scocia, Canada: Implications for the interpretation and correlation of ancient fluvial successions. Journal of Sedimentary Research, 80, 867-883.
López-Gómez, J., Martín-Chivelet, J., and Palma, R.M. (2009) Architecture and development of the alluvial sediments of the Upper Jurassic Tordillo Formation in the Cañada Ancha Valley, northern Neuquén Basin, Argentina. Sedimentary Geology, 219, 180-195.
López-Gómez, J., Arche, A., Vargas, H., and Marzo, M. (2010) Fluvial architecture as a response to two-layer lithospheric subsidence during the Permian and Triassic in the Iberian Basin, eastern Spain. Sedimentary Geology, 223, 320-333.
Miall, A.D. (1977) A review of the braided-river depositional environment. Earth Science Review, 13, 1-62.
Miall, A.D. (1978) Lithofacies types and vertical profile models in braided river deposits: a summary. In Miall, A.D. (ed) Fluvial Sedimentology.Can. Soc. Petro. Geol. Mem., 5, 579-604.
Miall, A.D. (1992) Alluvial deposits. In Walker, R.G. and James, N.P. (eds) Facies Models: Response to Sea Level Change. Geol. Assoc. Can., Waterloo, Ontario, 119-142.
Miall, A.D. (1996) The Geology of Fluvial Deposits-Sedimentary Facies, Basin Analysis, and Petroleum Geology. Springer-Verlag, Berlin, 582pp.
Mjøs, R., Walderhaug, O., and Prestholm, E. (1993) Crevasse splay sandstone geometries in the Middle Jurassic Ravenscar Group of Yorkshire, UK. In: Marzo, M., Puigdefábregas, C. (Eds.), Alluvial Sedimentation. Blackwell Scientific Publications, Special Publication, vol. 17, pp. 167–184.
Nemec, W. (1988) Coal correlations and intrabasinal subsidence: a new analytical perspective, in Kleinspehn, K., and Paola, C., eds., New Perspectives in Basin Analysis: New York, Springer-Verlag, p. 161–188.
Nemec, W. and Postma, G. (1993) Quaternary alluvial fans in southwestern Crete: sedimentation processes and geomorphic evolution. In Marzo, M. &Puigdefabregas, C. (eds) Alluvial Sedimentation. Spec. Pub. Int. Assoc. Sedi., 17, 235-276.
Plint, A., McCarthy, P., and Faccini, U. (2001) Nonmarine sequence stratigraphy; updip expression of sequence boundaries and systems tracts in a high-resolution framework, Cenomanian Dunvegan Formation, Alberta foreland basin, Canada: American Association of Petroleum Geologists, Bulletin, v. 85, p. 1967–2001.
Posamentier, H. (2001) Lowstand alluvial bypass systems: incised vs. unincised:American Association of Petroleum Geologists, Bulletin, v. 85, p. 1771–1793
Reading, H.G. (1986) Facies. In Reading, H.G. (ed) Sedimentary Environments and Facies, 2nd Edition. Blackwell Sci. Pub., Oxford, 4-19.
Reading, H.G. and Levell, B.K. (1996) Contorls on the sedimentary rock record. In Reading, H.G. (ed) Sedimentary Environment: Processes, Facies and Stratigraphy, 3rd Edition. Blackwell Science Ltd., Oxford, 5-36.
Reineck, H.E. and Singh, I.B. (1980) Depositional Sedimentary Environment, 2nd Edition. Springer-Verlag, Berlin, 549pp.
Rohling, E.J., Fenton, M., Jorissen, F.J., Bertrand, P., Ganssen, G., and Caulet, J.P. (1998) Magnitudes of sea-level lowstands of the past 500000 years.Nature, 394, 162-165.
Rust, B.R. (1978) Depositional model for braided alluvium. In Miall, A. D. (ed) Fluvial Sedimentology, Can. Soc. Petro. Geol. Mem., 5, 605-626.
Shanley, K., McCabe, P., and Andhettinger, R. (1992) Significance of tidal influence in fluvial deposits from interpreting sequence stratigraphy: Sedimentology, v. 39, p. 905–930.
Shanley, K. and McCabe, P. (1994) Perspectives on the sequence stratigraphy of continental strata. AAPG Bull., 78, 544-568.
Smith, N.D., Cross, T.A., Dufficy, J.P., and Clough, S.R. (1989) Anatomy of an avulsion. Sedimentology 36, 1–23.
Steel, R.J. and Thompson, D.B. (1983) Structures and textures in Triassic braided stream conglomerates (‘Bunter’ Pebble Beds) in the Sherwood Sandstone Group, North Staffordshire, England. Sedimentology, 30, 341-367.
Therrien, F. (2005) Palaeoenvironments of the latest Cretaceous (Maastrichtian) dinosaurs of Romania: insights from f luvial deposits and paleosols of the Transylvanian and Hateg basins. Palaeogeography, Palaeoclimatology, Palaeoecology 218, 15-56.
Therrien, F. (2006) Depositional environments and fluvial system changes in the dinosaur-bearing Sânpetru Formation (Late Cretaceous, Romania): Post-orogenic sedimentation in an active extensional basin. Sedimentary Geology, 192, 183-205.
Tibert, N. and Gibling, M. (1999) Peat accumulation on a drowned coastal braidplain: the Mullins Coal (upper Carboniferous), Sydney Basin, Nova Scotia: Sedimentary Geology, v. 128, p. 22–38.
Wadsworth, J., Boyd, R., Diessel, C., Leckie, D. and Zaitlin, B. (2002) Stratigraphic style of coal and nonmarine strata in a tectonically influences intermediate accommodation setting: the Mannville Group of Western Canadian Sedimentary Basin, south-central Alberta: Bulletin of Canadian Petroleum Geology, v. 50, p. 507–541.
Walker, R.G. and Cant, D.J. (1984) Sandy fluvial system. In Walker, R.G. (ed) Facies Models, 2nd Edition. Geol. Assoc. Can., Reprint Ser. 1, Waterloo, Ontario, 71-90.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J.C., McManus, J.F., Lambeck, K., Balbon, E., and Labracherie, M. (2002) Sea-level and deep water temperature changes derived from benthicforaminifera isotopic records. Quaternary Science Reviews 21, 295–305.
Wentworth, C.K. (1922) A Scale of Grade and Class Terms for Clastic Sediments. The Journal of Geology 30, 377-392.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw