進階搜尋


下載電子全文  
系統識別號 U0026-1006201617033300
論文名稱(中文) 腐植酸及pH值影響稻殼生物炭於水中吸附抗生素卡巴得(carbadox)
論文名稱(英文) Adsorption of Carbadox onto Rice Husk Biochar in Aqueous Solution Influence of Humic Acid and pH Effect
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 105
學期 1
出版年 105
研究生(中文) 瓦哈卜
研究生(英文) Wahab Sanyang
學號 P56027100
學位類別 碩士
語文別 英文
論文頁數 56頁
口試委員 口試委員-林財富
口試委員-黃良銘
指導教授-陳婉如
中文關鍵字 生物炭  卡巴得  腐植酸  等溫吸附曲線  稻穀 
英文關鍵字 Biochar  Carbadox  Humic acid  Isotherms  and Rice husk 
學科別分類
中文摘要 卡巴得(carbadox)是豬畜牧業一種常見的抗菌劑,主要用於添加在豬飼料中以預防細菌的感染。然而,當其釋放至水體中可能造成致癌性以及遺傳毒性的潛在危害,目前已經有越來越多的國家管制其用量,甚至提出將其禁止使用於動物食品中。
生物炭,是一種由生物質原料經緩慢熱裂解所產生的大量副產物,其主要成分為碳分子,和活性碳相比,其製造具有耗能少且可被大量製造的優點,但是文獻中生物炭在水溶液中作為吸附劑來吸附卡巴得的實驗鮮少被討論。因此,本研究想以稻穀燃燒後所形成之生物炭作為吸附劑,藉此來觀察其和卡巴得在水溶液之間的相互作用,以判斷生物炭是否適合用於去除水體中之卡巴得。
本研究透過Langmuir(L)- Freundlich(F) isotherm 等溫吸附曲線模式分析實驗數據,發現與理論中所提及吸附系統之趨勢線具有相當高的符合,相關係數R2值更是趨近於1,顯示L-F模式可以應用於本研究之實驗數據。
為了進一步探討添加腐植酸(humic acid)對於生物炭吸附卡巴得的影響,本實驗也另外加入了不同濃度的腐植酸(2-10 ppm)於吸附系統中來觀察其變化。經由研究發現,隨著腐植酸的濃度增加,卡巴得之吸附效果亦趨於良好。另外在腐植酸濃度為2, 5, 10 ppm時其吸附容量最大分別為31.35, 31.55, 及33 μmol/g,顯示腐植酸濃度會對於卡巴得之吸附有正相關影響,然而初始溶液的酸鹼值對於卡巴得之吸附影響並不顯著
英文摘要 The potential release of carbadox (CBX), a commonly used antibacterial agent in swine husbandry, into water systems is of a concern due to its carcinogenic and genotoxic effects. To the best of our knowledge, until this study, the adsorption of carbadox onto biochar in aqueous solution has yet to be investigated. In this work, rice husk biochar, a mass productive by-product of biomass slow pyrolysis, was adopted as an adsorbent to remove carbadox from aqueous solution. The experimental isotherm was analyzed by applying the Langmuir (L) –Freundlich (F) models Very good agreement was observed between the experimental points and fitted lines for all studied adsorption systems; the values of correlation coefficients R2 given figure are close to unity. It means that LF models describe well the analyzed experimental data.
To further explore the role of humic acid (HA) in carbadox sorption on rice husk biochar, various concentrations (2~10 ppm) of HA were co-introduced to biochar with carbadox in the sorption systems. In general, carbadox sorption on biochar increased with increasing HA concentration from 2 to 10 ppm. Moreover, the maximum adsorption capacities were calculated as 31.35, 31.55, and 33 μmol/g for 2, 5, and 10ppm humic acid concentration respectively. And results revealed that the influence of HA on carbadox sorption was dependent on HA concentration, whereas the initial pH of solution has small effects on carbadox adsorption under the experimental conditions
論文目次 ABSTRACT ........................................................I
ACKNOWLEDGEMENTS ........................................III
TABLE OF CONTENTS ......................................IV
LIST OF TABLES ........................................VII
LIST OF FIGURES ......................................VIII
CHAPTER 1 INTRODUCTION.............................................1
1.1 Research Background. .........................................................1
1.2 Research Objectives..................................4
CHAPTER 2 LITERATURE REVIEW..............................5
2.1 Physical and Chemical Properties of Carbadox.........5
2.1.1 Application of Carbadox............................7
2.1.2 Toxicity and Mutagenic of Carbadox.................7
2.1.3 Pathway to the Environment.........................8
2.2 Biochar.............................................10
2.2.1 Review of Biochar.................................10
2.2.2 Production and Properties of Biochar..............12
2.2.3 Slow Pyrolysis .................................. ..12
2.2.4 Mechanism and Adsorption............................4
2.2.5 Heavy Metals Interaction with Biochar..........................................14
2.2.6 Organic Pollutants Interaction with Biochar....................................16
2.2.7 Interaction of Biochar and Humic Acid..........................................19
2.3 Humic Acid.....................................20
2.3.1 Characteristic of Natural Organic Matter........................................20
2.3.2 Environmental Implication of Humic acids.....................................22
2.4 Adsorption Isotherm..................................................................23
2.4.1 Basic Adsorption Theory..........................................................24
2.4.2 Freundlich Adsorption Isotherm..................................................24
2.4.3 Langmuir Adsorption Isotherm................................................... 25
CHAPTER 3 MATERIALS AND METHODS .........................27
3.1 Preparation of Biochar...............................27
3.1.1 The FGs of bio-char samples determined by the FTIR........................29
3.1.2 Surface area and porosity analysis using micrometrics ASAP 2020.........29
3.1.3 Preparation of humic acid.........................................................30
3.2 Instrumentation .......................................................................31
3.2.1 Chromatographic conditions......................................................31
3.2.2 Stock solution preparation............................................................32
3.3 Experimental Setup......................................................................32
3.3.1 Characteristics of Carbadox Sorption by Rice Husk Biochar.................32
3.3.2 Initial pH Effect.....................................................................33
3.3.3 CBX Adsorption Equilibrium.....................................................33
3.3.4 Influence of Humic Acid..........................................................35
CHAPTER 4 RESULTS AND DISCUSSION ........................................................... 36 4.1 Effects of Functional Groups........................................................36
4.2 Characteristics of Carbadox Sorption by Rice Husk Biochar...................37
4.3 Effects of pH...........................................................................39
4.4 Adsorption Equilibrium..................................................................42
V
4.5 Co-introduction of Humic Acid and Carbadox on Rice Husk Biochar .............................................................................................................44
CHAPTER 5 CONCLUSION ....................................................................................48
5.1SUGGESTION....................................................................................................48
REFERENCES............................................................................................................50

LIST OF TABLES
Table 2-1 Listing of important physical and chemical properties of
Carbadox...................................................................................6
Table 2-2 Summaries of various biochars produced from different feed
stocks......................................................................................13
Table 3-1 Chemical reagents used in the experiment..................31
Table 4-1 Physiochemical properties of biochar....................................36

LIST OF FIGURES
Figure 2-1 Structures of five quinoxaline-1, 4-dioxides.....................................6
Figure 2-2 structures of bis- desoxycarbadox; DCBX and quinoxaline-2 carboxylic acid QCA..........................................................................................9
Figure 2-3 Postulated mechanisms of biochar interactions with inorganic contaminants ......................................................................................................15 Figure 2-4 Postulated mechanisms of the interactions of biochar with organic contaminants.....................................................................................18
Figure 2-5 sorption of HA onto biochar......................................................19
Figure 2-6 Hypothetical molecular structures of humic acid.................................21 Figure 2-7 Adsorption Isotherms.................................................................24
Figure 3-1 Schematic diagram of experimental procedures for the preparation of biochar.................................................................................................27
Figure 3-2 Rice husk before pyrolysis .......................................................28
Figure 3-3 Rice husk biochar..................................................................28
Figure 3-4 Schematic diagram of experimental procedures for adsorption equilibrium.......................................................................................33
Figure 3-5 Schematic diagram of experimental procedures for the influence of humic acid on the adsorption equilibrium............................................................34
VIII
Figure 4-1 Adsorption kinetic (a), and biochar mass loading (b) on carbadox removal by rice husk biochar.............................................................................38
Figure 4-2 (a) Effect of initial pH on the adsorption of carbadox on biochar; (b) the equilibrium pH vs. the initial pH..............................................................40
Figure 4-3 Experimental data of the influence of humic acid carbadox sorption onto rice husk biochar................................................................................41
Figure 4-4 Langmuir and Freundlich plot for CBX sorption onto rice husk biochar................................................................................................43
Figure 4-5 Langmuir and Freundlich plot for the influence of humic acid carbadox sorption onto rice husk biochar................................................................45

參考文獻
A. Carta, P. C., M. Loriga. (2005). Quinoxaline 1,4-dioxide: a versatile scaffold endowed with manifold activities. Current Medicinal Chemistry, 12, pp. 2259-2272(2214).
Abit, S. M., Bolster, C. H., Cai, P., & Walker, S. L. (2012). Influence of Feedstock and Pyrolysis Temperature of Biochar Amendments on Transport of Escherichia coli in Saturated and Unsaturated Soil. Environmental Science & Technology, 46(15), 8097-8105.
Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., Yang, J. E., et al. (2012). Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536-544.
Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., et al. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19-33.
Boily, J.-F. (2012). Water Structure and Hydrogen Bonding at Goethite/Water Interfaces: Implications for Proton Affinities. The Journal of Physical Chemistry C, 116(7), 4714-4724.
Boxall, A. B., Sherratt, T. N., Pudner, V., & Pope, L. J. (2007). A screening level index for assessing the impacts of veterinary medicines on dung flies. Environ Sci Technol, 41(7), 2630-2635.
Cao, X., Ma, L., Gao, B., & Harris, W. (2009). Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science and Technology, 43(9), 3285-3291.
Caron, F., Siemann, S., & Riopel, R. (2014). Characterization of the Natural Organic Matter (NOM) in groundwater contaminated with 60Co and 137Cs using ultrafiltration, Solid Phase Extraction and fluorescence analysis. Journal of Environmental Radioactivity, 138(0), 331-340.
Chen, Q., Tang, S., Jin, X., Zou, J., Chen, K., Zhang, T., et al. (2009). Investigation of the genotoxicity of quinocetone, carbadox and olaquindox in vitro using Vero cells. Food and Chemical Toxicology, 47(2), 328-334.
Chen, Z., Chen, B., & Chiou, C. T. (2012). Fast and slow rates of naphthalene sorption to biochars produced at different temperatures. Environmental Science and Technology, 46(20), 11104-11111.
Chen, Z., Chen, B., Zhou, D., & Chen, W. (2012). Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures. Environmental Science and Technology, 46(22), 12476-12483.
Chun, Y., Sheng, G., Chiou, C. T., & Xing, B. (2004). Compositions and Sorptive Properties of Crop Residue-Derived Chars. Environmental Science & Technology, 38(17), 4649-4655.
Derylo-Marczewska, A., Buczek, B., & Swiatkowski, A. (2011). Effect of oxygen surface groups on adsorption of benzene derivatives from aqueous solutions onto active carbon samples. Applied Surface Science, 257(22), 9466-9472.
DeSisto, W. J., Hill, N., Beis, S. H., Mukkamala, S., Joseph, J., Baker, C., et al. (2010). Fast pyrolysis of pine sawdust in a fluidized-bed reactor. Energy and Fuels, 24(4), 2642-2651.
Ding, Y., Teppen, B. J., Boyd, S. A., & Li, H. (2013). Measurement of associations of pharmaceuticals with dissolved humic substances using solid phase extraction. Chemosphere, 91(3), 314-319.
Dong, X., Ma, L. Q., Zhu, Y., Li, Y., & Gu, B. (2013). Mechanistic investigation of mercury sorption by Brazilian pepper biochars of different pyrolytic temperatures based on x-ray photoelectron spectroscopy and flow calorimetry. Environmental Science and Technology, 47(21), 12156-12164.
Faria, P. C. C., Órfão, J. J. M., & Pereira, M. F. R. (2004). Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Research, 38(8), 2043-2052.
Floate, K. D., Wardhaugh, K. G., Boxall, A. B. A., & Sherratt, T. N. (2005). FECAL RESIDUES OF VETERINARY PARASITICIDES: Nontarget Effects in the Pasture Environment. Annual Review of Entomology, 50(1), 153-179.
Gao, Y., Sun, Z., Sun, X., & Bao, Y. (2007). Toxic effect of olaquindox antibiotic on Eisenia fetida. European Journal of Soil Biology, 43, Supplement 1(0), S252-S255.
Gong, X., Li, W., Wang, K., & Hu, J. (2013). Study of the adsorption of Cr(VI) by tannic acid immobilised powdered activated carbon from micro-polluted water in the presence of dissolved humic acid. Bioresource Technology, 141(0), 145-151.
Halling-Sørensen, B., Nors Nielsen, S., Lanzky, P., Ingerslev, F., Holten Lützhøft, H., & Jørgensen, S. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment-A review. Chemosphere, 36(2), 357-393.
Han, Y., Boateng, A. A., Qi, P. X., Lima, I. M., & Chang, J. (2013). Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties. Journal of Environmental Management, 118, 196-204.
Inyang, M., Gao, B., Zimmerman, A., Zhang, M., & Chen, H. (2014). Synthesis, characterization, and dye sorption ability of carbon nanotube-biochar nanocomposites. Chemical Engineering Journal, 236, 39-46.
Jiménez, M. S., Gomez, M. T., Rodriguez, L., Velarte, R., & Castillo, J. R. (2010). Characterization of metal–humic acid complexes by polyacrylamide gel electrophoresis–laser ablation-inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 676(1–2), 9-14.
Kesiūnaitė, G., Naujalis, E., & Padarauskas, A. (2008). Matrix solid-phase dispersion extraction of carbadox and olaquindox in feed followed by hydrophilic interaction ultra-high-pressure liquid chromatographic analysis. Journal of Chromatography A, 1209(1–2), 83-87.
Leenheer, J. A., & Croué, J.-P. (2003). Peer Reviewed: Characterizing Aquatic Dissolved Organic Matter. Environmental Science & Technology, 37(1), 18A-26A.
Lehmann, J. (2009). Terra Preta Nova – Where to from Here? In W. Woods, W. Teixeira, J. Lehmann, C. Steiner, A. WinklerPrins & L. Rebellato (Eds.), Amazonian Dark Earths: Wim Sombroek's Vision (pp. 473-486): Springer Netherlands.
Lehmann, J., & Joseph, S. (2012). Biochar for environmental management: science and technology: Routledge.
Lian, F., Sun, B., Chen, X., Zhu, L., Liu, Z., & Xing, B. (2015). Effect of humic acid (HA) on sulfonamide sorption by biochars. Environmental Pollution, 204, 306-312.
Liu, P., Liu, W.-J., Jiang, H., Chen, J.-J., Li, W.-W., & Yu, H.-Q. (2012). Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology, 121, 235-240.
Liu, Y., Yang, C., Cheng, P., He, X., Zhu, Y., & Zhang, Y. (2015). Influences of humic acid on the bioavailability of phenanthrene and alkyl phenanthrenes to early life stages of marine medaka (Oryzias melastigma). Environ Pollut, 210, 211-216.
Liu, Z.-Y., Tao, Y.-F., Chen, D.-M., Wang, X., & Yuan, Z.-H. (2011). Identification of carbadox metabolites formed by liver microsomes from rats, pigs and chickens using high-performance liquid chromatography combined with hybrid ion trap/time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 25(2), 341-348.
MacIntosh, A. I., Lauriault, G., & Neville, G. A. (1985). Liquid chromatographic monitoring of the depletion of carbadox and its metabolite desoxycarbadox in swine tissues. J Assoc Off Anal Chem, 68(4), 665-671.
Mao, J. D., Johnson, R. L., Lehmann, J., Olk, D. C., Neves, E. G., Thompson, M. L., et al. (2012). Abundant and stable char residues in soils: Implications for soil fertility and carbon sequestration. Environmental Science and Technology, 46(17), 9571-9576.
Matilainen, A., Vepsäläinen, M., & Sillanpää, M. (2010). Natural organic matter removal by coagulation during drinking water treatment: A review. Advances in Colloid and Interface Science, 159(2), 189-197.
McKellar, Q. (1997). Ecotoxicology and residues of anthelmintic compounds. Veterinary parasitology, 72(3), 413-435.
Meyer, S., Glaser, B., & Quicker, P. (2011). Technical, economical, and climate-related aspects of biochar production technologies: A literature review. Environmental Science and Technology, 45(22), 9473-9483.
Mohan, D., Pittman Jr, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy and Fuels, 20(3), 848-889.
Nabuurs, M. J. A., & van der Molen, E. J. (1989). Clinical Signs and Performance of Pigs During the Administration of Different Levels of Carbadox and After Withdrawal. Journal of Veterinary Medicine Series A, 36(1-10), 209-217.
Nakagawa, K., Namba, A., Mukai, S. R., Tamon, H., Ariyadejwanich, P., & Tanthapanichakoon, W. (2004). Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes. Water Research, 38(7), 1791-1798.
Nikolaou, A. D., & Lekkas, T. D. (2001). The Role of Natural Organic Matter during Formation of Chlorination By-products: A Review. Acta hydrochimica et hydrobiologica, 29(2-3), 63-77.
Pan, B., Zhang, D., Li, H., Wu, M., Wang, Z., & Xing, B. (2013). Increased Adsorption of Sulfamethoxazole on Suspended Carbon Nanotubes by Dissolved Humic Acid. Environmental Science & Technology, 47(14), 7722-7728.
Qian, L., & Chen, B. (2013). Dual role of biochars as adsorbents for aluminum: The effects of oxygen-containing organic components and the scattering of silicate particles. Environmental Science and Technology, 47(15), 8759-8768.
Qiu, Y., Zheng, Z., Zhou, Z., & Sheng, G. D. (2009). Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresource Technology, 100(21), 5348-5351.
Redman, A. D., Macalady, D. L., & Ahmann, D. (2002). Natural organic matter affects arsenic speciation and sorption onto hematite. Environ Sci Technol, 36(13), 2889-2896.
Shackley, S., Carter, S., Knowles, T., Middelink, E., Haefele, S., Sohi, S., et al. (2012). Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: Context, chemical properties, environmental and health and safety issues. Energy Policy, 42, 49-58.
Shah, A., Darr, M. J., Dalluge, D., Medic, D., Webster, K., & Brown, R. C. (2012). Physicochemical properties of bio-oil and biochar produced by fast pyrolysis of stored single-pass corn stover and cobs. Bioresource Technology, 125, 348-352.
Shah, A. D., Kim, J.-H., & Huang, C.-H. (2006). Reaction kinetics and transformation of carbadox and structurally related compounds with aqueous chlorine. Environmental science & technology, 40(23), 7228-7235.
Shen, Y. S., Wang, S. L., Tzou, Y. M., Yan, Y. Y., & Kuan, W. H. (2012). Removal of hexavalent Cr by coconut coir and derived chars - The effect of surface functionality. Bioresource Technology, 104, 165-172.
Sohi, S. P. (2012). Carbon storage with benefits. Science, 338(6110), 1034-1035.
Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). Chapter 2 - A Review of Biochar and Its Use and Function in Soil Advances in Agronomy (Vol. Volume 105, pp. 47-82): Academic Press.
Strock, T. J., Sassman, S. A., & Lee, L. S. (2005). Sorption and related properties of the swine antibiotic carbadox and associated N-oxide reduced metabolites. Environmental science & technology, 39(9), 3134-3142.
Sun, K., Keiluweit, M., Kleber, M., Pan, Z., & Xing, B. (2011). Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure. Bioresource Technology, 102(21), 9897-9903.
Tang, W.-W., Zeng, G.-M., Gong, J.-L., Liang, J., Xu, P., Zhang, C., et al. (2014). Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Science of The Total Environment, 468–469, 1014-1027.
Terbouche, A., Ramdane-Terbouche, C. A., Hauchard, D., & Djebbar, S. (2011). Evaluation of adsorption capacities of humic acids extracted from Algerian soil on polyaniline for application to remove pollutants such as Cd(II), Zn(II) and Ni(II) and characterization with cavity microelectrode. J Environ Sci (China), 23(7), 1095-1103.
Tong, X.-j., Li, J.-y., Yuan, J.-h., & Xu, R.-k. (2011). Adsorption of Cu(II) by biochars generated from three crop straws. Chemical Engineering Journal, 172(2–3), 828-834.
Tsai, W. T., & Chen, H. R. (2013). Adsorption kinetics of herbicide paraquat in aqueous solution onto a low-cost adsorbent, swine-manure-derived biochar. International Journal of Environmental Science and Technology, 10(6), 1349-1356.
U.S. Food, a. D. A. (1998). FREEDOM OF INFORMATION SUMMARY 041-061.
Verheijen, F., Jeffery, S., Bastos, A., Van der Velde, M., & Diafas, I. (2010). Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions. EUR, 24099.
Voogd, C. E., van der Stel, J. J., & Jacobs, J. J. J. A. A. (1980). The mutagenic action of quindoxin, carbadox, olaquindox and some other N-oxides on bacteria and yeast. Mutation Research/Genetic Toxicology, 78(3), 233-242.
Wang, X., & Xing, B. (2007). Sorption of organic contaminants by biopolymer-derived chars. Environmental science & technology, 41(24), 8342-8348.
Wardhaugh, K. G. (2005). Insecticidal activity of synthetic pyrethroids, organophosphates, insect growth regulators, and other livestock parasiticides: an Australian perspective. Environ Toxicol Chem, 24(4), 789-796.
Whitman, T., Nicholson, C. F., Torres, D., & Lehmann, J. (2011). Climate Change Impact of Biochar Cook Stoves in Western Kenyan Farm Households: System Dynamics Model Analysis. Environmental Science & Technology, 45(8), 3687-3694.
Wu, Y., Wang, Y., Huang, L., Tao, Y., Yuan, Z., & Chen, D. (2006). Simultaneous determination of five quinoxaline-1,4-dioxides in animal feeds using ultrasonic solvent extraction and high-performance liquid chromatography. Analytica Chimica Acta, 569(1–2), 97-102.
Wu, Y., Yu, H., Wang, Y., Huang, L., Tao, Y., Chen, D., et al. (2007). Development of a high-performance liquid chromatography method for the simultaneous quantification of quinoxaline-2-carboxylic acid and methyl-3-quinoxaline-2-carboxylic acid in animal tissues. Journal of Chromatography A, 1146(1), 1-7.
Xie, M., Chen, W., Xu, Z., Zheng, S., & Zhu, D. (2014). Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions. Environmental Pollution, 186, 187-194.
Xu, R. K., Xiao, S. C., Yuan, J. H., & Zhao, A. Z. (2011). Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresource Technology, 102(22), 10293-10298.
Xu, X., Cao, X., & Zhao, L. (2013). Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars. Chemosphere, 92(8), 955-961.
Yao, Y., Gao, B., Chen, H., Jiang, L., Inyang, M., Zimmerman, A. R., et al. (2012). Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. Journal of Hazardous Materials, 209-210, 408-413.
Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X., Pullammanappallil, P., et al. (2011). Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresource Technology, 102(10), 6273-6278.
Yoshimura, H., Nakamura, M., Koeda, T., & Yoshikawa, K. (1981). Mutagenicities of carbadox and olaquindox — Growth promoters for pigs. Mutation Research/Genetic Toxicology, 90(1), 49-55.
Zhang, P., Sun, H., Yu, L., & Sun, T. (2013). Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: Impact of structural properties of biochars. Journal of Hazardous Materials, 244-245, 217-224.
Zheng, W., Guo, M., Chow, T., Bennett, D. N., & Rajagopalan, N. (2010). Sorption properties of greenwaste biochar for two triazine pesticides. Journal of Hazardous Materials, 181(1-3), 121-126.
Zhu, X., Liu, Y., Zhou, C., Luo, G., Zhang, S., & Chen, J. (2014). A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline. Carbon, 77, 627-636.

vlab.amrita.edu,. (2011). Adsorption Isotherm. Retrieved 22 January 2016, fromvlab.amrita.edu/?sub=2&brch=190&sim=606&cnt=1http://vlab.amrita.edu/?sub=2&brch=190&sim=606&cnt=1
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-10-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-10-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw