進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1006201515060200
論文名稱(中文) 銷售損失型動態批量存貨模式與解法發展
論文名稱(英文) A Study of Dynamic Lot-sizing Inventory Problem with Lost-sale
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系
系所名稱(英) Department of Industrial and Information Management
學年度 103
學期 2
出版年 104
研究生(中文) 沈姿儀
研究生(英文) Zi-Yi Shen
學號 R36034024
學位類別 碩士
語文別 中文
論文頁數 65頁
口試委員 指導教授-李賢得
口試委員-利德江
口試委員-王清正
中文關鍵字 動態批量存貨  銷售損失  有限規劃時程  動態規劃 
英文關鍵字 dynamic lot-sizing inventory  lost-sale  finite horizon  dynamic programming 
學科別分類
中文摘要 動態批量問題包含製造商之生產存貨管理或訂購商之進貨供貨管理等,如何訂定存貨政策以降低總成本,或提高總利潤,是生產與存貨管理中相當重要的課題。目前動態批量相關研究已發展數十年,在單階層生產存貨問題方面,其求解方法十分多元,且求解效率甚佳,此動態決策問題亦可延伸至如俱容量限制、允許缺貨或其他變型之動態批量研究,但目前針對銷售損失型缺貨之動態批量研究相對較少,且其中考量典型銷售損失型缺貨之存貨研究更為稀少。
本研究探討典型銷售損失型動態批量存貨政策,所謂典型銷售損失是指,只要當期存貨為正值且有需求大於零,就必須供貨,而當發生缺貨時,顧客不會等待補貨,而是轉往他處滿足其需求,故會發生收益損失,亦可能產生銷售損失成本。問題中探討已知未來固定規劃期間內之各期顧客需求量,如顧客訂單量或預測銷售等資料,且各期之單位產品價格、單位生產(或採購)成本、單位存貨持有成本、單位缺貨成本、及各期固定整備(或訂購)成本皆為已知,並可隨期別變動。本研究之目的為發展快速求解方法,求得最佳生產(或訂購)量,以最小化規劃期內總成本,而總成本則包含整備(或訂購)成本、生產(或採購)成本、存貨持有成本、及銷售損失成本。
研究中首先建立此動態存貨問題之整數及動態規劃模式,並根據問題特性與古典動態批量理論,建立四個重要最佳解理論性質,進而利用發現之特性,發展演算時間複雜度為O(n^2)之改良型動態規劃求解方法,其中n為總規劃期數。演算實驗發現,本研究之改良型動態規劃演算法,與窮舉法以及數學規劃軟體求解比較,其演算時間更具效率、表現較穩定,且其演算時間不受成本參數或總需求變化之影響。
英文摘要 A dynamic lot-sizing inventory problem with lost-sale is addressed in this thesis. Demand is satisfied from on-hand stock until it is depleted and unsatisfied demand is lost without replenishment. For a given stream of demand data in finite periods, the objective is to determine the optimal replenishment policy which minimizes the total relevant cost, including setup cost, unit variable cost, inventory holding cost, and lost-sale cost, where the cost parameters may vary over the planning horizon. The described dynamic control problem is different from those in the literature, where on-hand inventory can be reserved to satisfy future demand, instead of meet current demand. The dynamic inventory problem is formulated as a dynamic programming model. Four dominance properties are established, and are used to develop an efficient dynamic programming algorithm, which runs in polynomial time O(n^2), where n is the number of planning periods in the dynamic inventory problem. Computational experiments have shown that the developed dynamic programming algorithm is very efficient, i.e., less than 1 second for solving problems with planning periods up to 100. The performance of the solution procedure is also very consistent, regardless of changes of a variety of parameters.
論文目次 摘要 I
Extended Abstract II
誌謝 V
目錄 VI
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1研究動機 1
1.2研究目的 1
1.3研究範圍與限制 2
1.4研究架構與流程 2
第二章 文獻回顧 5
2.1經濟批量模式 5
2.2古典動態批量模式 9
2.3動態批量變型模式 11
2.3.1遇缺補貨型動態批量模式 12
2.3.2銷售損失型動態批量模式 13
2.3.3其他動態批量變型模式 14
第三章 銷售損失型動態批量存貨模式與性質發展 17
3.1問題定義 17
3.2數學規劃模式 19
3.3最佳解之理論性質發現與證明 22
3.4改良型動態規劃模式 33
第四章 演算法發展與演算實驗 38
4.1改良型動態規劃演算法發展 38
4.2演算範例說明 40
4.2.1窮舉法求解 41
4.2.2改良型動態規劃演算法求解 44
4.3演算實驗 47
4.3.1參數變化實驗 48
4.3.2規劃期數變化實驗 52
第五章 研究發現與未來議題 54
5.1研究發現 54
5.2未來議題 54
參考文獻 56
附錄A.1:演算法之C++程式碼 59
參考文獻 Abad, P.L., 2003, Optimal pricing and lot-sizing under conditions of perishability, finite production and partial backordering and lost sale. European Journal of Operational Research, 144, 677-685.

Absi, N., Kedad-Sidhoum, S., Dauzere-Peres, S., 2011, Uncapacitated lot-sizing problem with production time windows, early productions, backlogs and lost sales. International Journal of Production Research, 49, 2551-2566.

Aggarwal, A., Park, J.K., 1993, Improved algorithms for economic lot size problems. Operations Research, 41, 549-571.

Aksen, D., Altinkemer, K., Chand, S., 2003, The single-item lot-sizing problem with immediate lost sales. European Journal of Operational Research, 147, 558-566.

Berk, E., Toy, A.O., Hazir, O., 2008, Single item lot-sizing problem for a warm/cold process with immediate lost sales. European Journal of Operational Research, 187, 1251-1267.

Elmaghraby, S.E., 1978, The economic lot scheduling problem (ELSP): Review and extensions. Management Science, 24, 587-598.

Faaland, B.H., Schmitt, T.G., Arreola-Risa, A., 2004, Economic lot scheduling with lost sales and setup times. IIE Transactions, 36, 629-640.

Federgruen, A., Tzur, M., 1991, A simple forward algorithm to solve general dynamic lot sizing models with n periods in or time. Management Science, 37, 909-925.

Federgruen, A., Tzur, M., 1993, The dynamic lot-sizing model with backlogging: a simple algorithm and minimal forecast horizon procedure. Naval Research Logistics, 40, 459-478.

Florian, M., Klein, M., 1971, Deterministic production planning with concave costs and capacity constraints. Management Science, 18, 12-20.

Francis, M., Webster K., 1989, A backorder version of the Wagner-Whitin discrete-demand EOQ algorithm by dynamic programming. Production and Inventory Management Journal, 4, 1-5.

Gallego, G., Roundy, R., 1992, The economic lot scheduling problem with finite backorder costs. Naval Research Logistics, 39, 729-739.

Harris, F.W., 1915, What quantity to make at once. In The Library of Factory Management, Vol. V. Operation and Costs, A.W. Shaw Company, Chicago, 47-52.

Hsu, V.N., Lowe, T.J., 2001, Dynamic economic lot size models with period-pair-dependent backorder and inventory costs. Operations Research, 49, 316-321.

Hwang, H.C., Van den Heuvel, W., 2012, Improved algorithms for a lot-sizing problem with inventory bounds and backlogging. Naval Research Logistics, 59, 244-253.

Hwang, H.C., Van den Heuvel, W., Wagelmans, A.P.M., 2013, The economic lot-sizing problem with lost sales and bounded inventory. IIE Transactions, 45, 912-924.

Jans, R., Degraeve, Z., 2008, Modeling industrial lot sizing problems: a review. International Journal of Production Research, 46, 1619-1643.

Liu, X., Chu, F., Chu, C., Wang, C., 2007, Lot sizing with bounded inventory and lost sales. International Journal of Production Research, 45, 5881-5894.

Love, S.F., 1973, Bounded production and inventory models with piecewise concave costs. Management Science, 20, 313-318.

Sandbothe, R.A., Thompson, G.L., 1990, A forward algorithm for the capacitated lot size model with stockouts. Operations Research, 38, 474-486.

Song, Y.Y., Chan, G.H., 2005, Single item lot-sizing problems with backlogging on a single machine at a finite production rate. European Journal of Operational Research, 161, 191-202.

Taft, E.W., 1918, The most economical production lot. Iron Age, 101, 1410-1412.

Van Hoesel, C.P.M., Wagelmans, A.P.M., 1996, An algorithm for the economic lot-sizing problem with constant capacities. Management Science, 42, 142-150.

Wagelmans, A., Van Hoesel, S., Kolen, A., 1992, Economic lot sizing: an algorithm that runs in linear time in the Wagner-Whitin case. Operations Research, 40, S145-S156.

Wagner, H.M., Whitin, T.M., 1958, Dynamic version of the economic lot size model. Management Science, 5, 89-96.

Zangwill, W.I., 1966, A deterministic multi-period production scheduling model with backlogging. Management Science, 13, 105-119.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-12-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw