進階搜尋


下載電子全文  
系統識別號 U0026-1006201319242700
論文名稱(中文) 金奈米材料與鑭系上轉換奈米粒子之應用:結構轉換,分析感測與生物醫學之研究
論文名稱(英文) Au and Lanthanide doped upconversion nanoparticles : structural evolution, sensing and biomedical studies
校院名稱 成功大學
系所名稱(中) 化學系碩博士班
系所名稱(英) Department of Chemistry
學年度 101
學期 2
出版年 102
研究生(中文) 簡儀欣
研究生(英文) Yi-Hsin Chien
學號 l38981175
學位類別 博士
語文別 中文
論文頁數 180頁
口試委員 指導教授-葉晨聖
口試委員-胡景瀚
口試委員-許火順
口試委員-陳東煌
口試委員-孫亦文
中文關鍵字 綠色化學  十面體金奈米粒子  太陽能  比色分析法  銀三角板奈米粒子  伽凡尼取代反應  結構轉換  上轉換奈米粒子  藥物釋放系統  標定作用  化學治療 
英文關鍵字 green chemistry  Au decahedron  solar energy  colorimetric sensor  Ag nanopresim  solid-to-solid conversion  hollow structure  galvanic replacement  backfilling  drug delivery  upconversion nanoparticles  photo-targeting  chemotherapy 
學科別分類
中文摘要 自然界約有三分之二的元素屬於金屬,深入研究金屬奈米材料一直是科學家重視的領域之一。本論文的研究主要在探討貴金屬奈米粒子的結構轉換與分析感測,以及上轉換奈米粒子於生物醫學的應用。研究的內容包含四個章節:第二章,以綠色化學的概念為基礎,選用對環境無汙染的檸檬酸鈉與四氯氫化金水溶液,將兩種添加物的混合水溶液在不耗費任何電力的情況下直接以太陽光曝曬6小時,即可以合成出高產率的十面體金奈米粒子,此金奈米粒子具有良好的熱穩定性,且對於偵測鉛離子具有高靈敏性。第三章與第四章為延續性的研究,著重於”銀”奈米三角板經由伽凡尼取代反應轉換成”金”奈米三角板的研究主題。根據兩種金屬不同的氧化還原電位,透過伽凡尼取代反應可置備出不同形貌的中空奈米材料,然而,伽凡尼取代反應過程中有過多的氧化試劑,快速且持續的侵蝕奈米結構導致結構中空化的現象。我們提出一個簡單的化學反應策略,經由伽凡尼取代反應形成的中空環狀奈米三角板持續成長為實心的奈米三角板結構,在不改變形貌的情況下成功地將銀奈米三角板轉換成實心的金(或鈀)奈米三角板。在金屬轉換的反應過程中會同時發生兩種金屬的氧化還原反應以及金屬回填於結構等兩個部分,其中十六烷基三甲基溴化銨會與金屬結合形成錯合物,在反應中扮演維持形貌及減緩金屬還原的重要因素。延續上一章節的概念,第四章的研究中我們設計一個實驗的策略以包覆二氧化矽奈米膠囊的銀奈米三角板作為基材,藉由加入足夠量的四氯酸金水溶液在室溫下震盪反應,過程中經由中空的金銀合金結構 (Au/Ag alloy),逐漸地回填成形貌、大小皆不改變的實心金奈米結構,成功地將表面批覆二氧化矽的銀奈米三角板轉換成金奈米三角板。最後,在研究吸收型近紅外光金屬奈米材料的部分,著重於多功能性的上轉換奈米粒子在細胞與活體生物上的標定作用、生物顯影以及化學治療之應用。在第五章的研究中,我們設計一個藥物載體與控制釋放的平台,將接有光罩分子的葉酸分子修飾在上轉換奈米粒子之表面形成多功能性的複合材料作為藥物載體,在條件溫和的連續波二極體近紅外光雷射 (CW diode laser,980 nm) 照射下,利用上轉換奈米粒子特殊的光學性質可釋放出高能量紫外光波段的螢光並驅動光罩分子脫離材料表面,藉由葉酸分子裸露在材料表面與過度表現葉酸受體的癌細胞進行專一性的標定,且同時標靶病灶與進行觸發式的藥物釋放,此種模式能夠提高局部組織的藥物傳遞效率及降低藥物對周遭正常組織的副作用,視為非常具有前瞻性的新興癌症治療方式。
英文摘要 Around 70 % of nature is filled with metals. For the past few decades, scientists have devoted to the study noble metal nanomaterials, which are still continuing. In this thesis the structural evolution and sensing of gold nanoparticles; and biomedical studies for upconversion nanoparticles is reported. There are four chapters in this thesis, with the introduction in the first chapter emphasizing the importance. In the chapter 2, aqueous solution containing two additives, chloroauric acid (HAuCl4) and trisodium citrate (Na3C6H5O7), were irradiated by sunlight, without any supplemental stimulus such as electric power, to form high-yield Au decahedra. Those Au nanodecahedra were thermodynamically stable and exhibited high performance sensing for lead (Pb2+) ions.
In the chapter 3 and 4, we focus on the topic of converting Ag nanostructure to Au nanostructure with the galvanic replacement reaction. Based on the difference in the redox potentials between two metal species, the galvanic replacement reaction is known to create an irreversible hollow nanostructure in a wide range of shapes. In the context of galvanic replacement reaction, continuous etching lead to the collapse of the hollow structures because of the excess amount of oxidizing agent. In contrast, we demonstrate the growth of solid nanostructures from a hollow frame-like architecture in the course of a galvanic replacement reaction without any morphology destruction. We report the successful transformation of solid Ag to solid Au counterparts using straightforward chemical reactions. The successful conversion process relies on the decrease in reduction rate of the metallic precursor to initiate dissolution of Ag in the first stage (a galvanic replacement reaction), then a subsequent backfilling of Au into the hollowed-out structures. Here the reduction rate is controlled by the cetyltrimethylammonium bromide (CTAB) surfactant, as they interact with the metal salt precursor to form a complex species. To continuous the above concept inside a shell, we design inert silica coated Ag nanostructure (nanoprism), where the core replacement was studied with aqueous HAuCl¬4 addition at room temperature. We report the successful composition transformation of silica-coasted solid Ag to solid gold via Ag/Au alloy hollow structure without any morphology destruction.
With respect to the NIR-absorptive nanomaterials, we focus on the system of upconversion nanoparticle (UCNPs). It is noted that there has been no report on the systemic administration UCNPs-based drug delivery agents for evaluation of bioimaging and chemotherapy. We design the photocaged upconversion nanoparticles as the NIR-triggered targeting and drug delivery vehicles that successfully deliver for in vitro and in vivo for near-infrared light photocontrolled targeting, bioimaging, and chemotherapy via NIR irradiation. The caged UNCPs serve as a platform for the improvement of selectively targeting and possible reduction of adverse side effect from chemotherapy.
論文目次 摘要 I
Abstract III
誌謝 V
目錄 VIII
圖目錄 XIV
表目錄 XXI
第一章 緒論 1
1.1奈米材料的簡介 1
1.1.1奈米材料的發展 1
1.1.2奈米材料的特性 2
1.1.3奈米材料的合成 4
1.1.4奈米材料的穩定性與表面改質 5
1.1.5奈米材料於生物醫學上之應用 6
1.2貴金屬奈米粒子之探討 7
1.2.1貴金屬奈米粒子之結構 7
1.2.2金屬奈米粒子之光學特性 11
1.3光學技術於生醫應用的限制:近紅外光材料的重要性 14
1.3.1近紅外光奈米材料 16
1.3.2上轉換奈米粒子之簡介 16
1.3.3上轉換奈米粒子之光學性質 20
1.3.4上轉換奈米粒子之合成與表面修飾 21
1.4奈米材料於分子顯影之應用 25
1.4.1螢光光學影像顯影技術 (Optical Fluorescence Imaging) 26
1.5典型癌症治療方式 27
1.6藥物傳輸系統(Drug Delivery System) 28
1.7論文規劃 32
第二章 33
以綠色化學法合成十面體金奈米粒子作為高靈敏性之鉛離子感測器 33
2.1研究動機 34
2.2 實驗藥品與儀器 37
2.2.1 藥品 37
2.2.2 儀器設備 38
2.3 實驗步驟 39
2.3.1 十面體金奈米粒子之合成 39
2.3.2 榖胱甘肽 (glutathione) 修飾於十面體金奈米粒子之表面 40
2.3.3 十面體金奈米粒子用於檢測重金屬離子 40
2.4 實驗結果與討論 41
2.4.1 合成十面體金奈米粒子之材料鑑定:TEM、HR-TEM、EDS、XRD 41
2.4.2十面體金奈米粒子之表面分析及鑑定:UV-Vis、TEM、Zeta potential、FT-IR、XPS 43
2.4.3合成十面體金奈米粒子之機制探討 47
2.4.4 實驗條件對於製備十面體金奈米粒子之影響:檸檬酸鈉分子的濃度、溫度以及陽光的照射 48
2.4.5 比色分析法(colorimetric assay):未修飾十面體金奈米粒子(label-free Au decahedral nanoparticles) 作為重金屬鉛離子感測器 51
2.4.6 比色分析法(colorimetric assay):將榖胱甘肽 (glutathione)修飾於十面體金奈米粒子 (GSH-Au decahedral nanoparticles) 作為重金屬鉛離子感測器 55
2.4.7 模擬真實樣品中檢測鉛離子的濃度 56
2.4.8十面體金奈米粒子做為鉛離子感測器之結構探討 58
2.5結論 60
第三章 61
以伽凡尼取代反應將銀奈米粒子基板經由固態→中空→固態的過程轉換成金或鈀奈米粒子 61
3.1研究動機 62
3.2 實驗藥品與儀器 64
3.2.1 藥品 64
3.2.2 儀器設備 65
3.3 實驗步驟 65
3.3.1合成銀三角板奈米粒子 (Ag nanoprism) 65
3.3.2將銀三角板奈米粒子轉換成形貌、大小維持不變之金三角板奈米粒子 66
3.3.3將銀三角板奈米粒子轉換成形貌、大小維持不變之鈀三角板奈米粒子 66
3.4 實驗結果與討論 67
3.4.1銀三角板奈米粒子 (Ag nanoprisms)→中空金銀合金三角板奈米粒子 (Au/Ag hollow nanoprisms)→金三角板奈米粒子 (grown Au nanoprisms) 之結構與光學特性分析:TEM and UV-Vis 67
3.4.2銀三角板奈米粒子 (Ag nanoprisms)→中空金銀合金三角板奈米粒子 (Au/Ag hollow nanoprisms)→金三角板奈米粒子 (grown Au nanoprisms)之結構組成分析:HRTEM、EDS、line scan-EDS and ICP 69
3.4.3銀三角板奈米粒子 (Ag nanoprisms)→中空金銀合金三角板奈米粒子 (Au/Ag hollow nanoprisms)→金三角板奈米粒子 (grown Au nanoprisms)之反應機制探討: 72
3.4.4銀三角板奈米粒子 (Ag nanoprisms)→中空鈀銀合金三角板奈米粒子 (Pd/Ag hollow nanoprisms)→鈀三角板奈米粒子 (grown Pd nanoprisms)之結構與光學特性分析:TEM and UV-Vis 74
3.4.5銀三角板奈米粒子(Ag nanoprisms)→中空鈀銀合金三角板奈米粒子(Pd/Ag hollow nanoprisms)→鈀三角板奈米粒子(grown Pd nanoprisms)之結構組成分析:HRTEM、EDS、line scan-EDS and ICP 76
3.4.6銀三角板奈米粒子(Ag nanoprisms)→中空鈀銀合金三角板奈米粒子(Pd/Ag hollow nanoprisms)→鈀三角板奈米粒子(grown Pd nanoprisms)之反應機制探討: 79
3.5結論 81
第四章 82
以伽凡尼取代反應將二氧化矽包覆銀奈米粒子基板經由固態→中空→固態的過程轉換成二氧化矽包覆金奈米粒子 82
4.1研究動機 83
4.2 實驗藥品與儀器 85
4.2.1 藥品 85
4.2.2 儀器設備 86
4.3 實驗步驟 87
4.3.1合成銀三角板奈米粒子(Ag nanoprism) 87
4.3.2合成銀/二氧化矽核殼三角板奈米粒子 (Ag@SiO2 nanoprism) 87
4.3.3合成銀正方體奈米粒子 (Ag nanocube) 88
4.3.4合成銀/二氧化矽核殼正方體奈米粒子 (Ag@SiO2 nanocube) 88
4.3.5合成銀球奈米粒子 (Ag nanosphere) 88
4.3.6合成以檸檬酸鈉分子覆蓋之銀球奈米粒子 (Ag nanosphere) 89
4.3.7合成銀/二氧化矽核殼銀球奈米粒子 (Ag@SiO2 nanosphere) 89
4.3.8將銀/二氧化矽核殼奈米結構轉換成金/二氧化矽核殼奈米結構之合成方法 90
4.4結果與討論 91
4.4.1加入不同四氯氫化金濃度的實驗條件:銀/二氧化矽核殼三角板奈米粒子 (Ag@SiO2 nanoprisms) →中空的銀/二氧化矽核殼金銀合金三角板奈米粒子 (Au/Ag @ SiO2 hollow nanoprisms) →金/二氧化矽核殼三角板奈米粒子 (grown Au@SiO2 nanoprisms) 之結構與光學特性分析:TEM and UV-Vis 91
4.4.2不同反應時間點的實驗條件:銀/二氧化矽核殼三角板奈米粒子(Ag@SiO2 nanoprisms) →中空的銀/二氧化矽核殼金銀合金三角板奈米粒子 (Au/Ag @ SiO2 hollow nanoprisms) →金/二氧化矽核殼三角板奈米粒子 (grown Au@SiO2 nanoprisms) 之的結構與光學特性分析:TEM and UV-Vis 93
4.4.3銀/二氧化矽核殼三角板奈米粒子 (Ag@SiO2 nanoprisms) →中空的銀/二氧化矽核殼金銀合金三角板奈米粒子 (Au/Ag @ SiO2 hollow nanoprisms) →金/二氧化矽核殼三角板奈米粒子 (grown Au@SiO2 nanoprisms) 之的結構組成分析:HRTEM、EDS and line scan-EDS 97
4.4.4銀/二氧化矽核殼正方體奈米粒子與銀/二氧化矽核殼圓球進行伽凡尼取代反應後結構、光學特性分析:TEMs 101
4.4.5將銀/二氧化矽核殼奈米結構轉換成金/二氧化矽核殼奈米結構之反應機制探討 102
4.4.6銀/二氧化矽核殼圓球奈米粒子(Ag@SiO2 nanospheres)→金/二氧化矽核殼圓球奈米粒子(grown Au@SiO2 nanospheres)之的結構組成分析:HRTEM、EDS and line scan-EDS 105
4.5結論 107
第五章 108
近紅外光驅動上轉換奈米粒子應用於細胞與活體生物之標定作用、生物影像與化學治療 108
5.1研究動機 109
5.2 實驗藥品與儀器 114
5.2.1 藥品 114
5.2.2細胞實驗所需之化學藥品 116
5.2.3 儀器設備 117
5.3 實驗步驟 119
5.3.1合成NaYF4 : Yb, Tm上轉換奈米粒子 (Upconversion nanopaticles, UCNPs) 119
5.3.2 上轉換奈米粒子之表面修飾 120
5.3.3癌細胞培養與生物毒性測試 (MTT試驗) 123
5.3.4癌細胞培養與細胞標定測試 124
5.3.5癌細胞培養與細胞存活率測試 (MTT試驗法) 125
5.3.6癌細胞培養與細胞標定及Dox釋放行為之觀察 126
5.4結果與討論 127
5.4.1上轉換奈米粒子和上轉換/二氧化矽核殼奈米粒子之結構與光學性質探討:TEM、HR-TEM、XRD以及Fluorescence (FL) 127
5.4.2修飾前後的OA-UCNPs、UCNPs@SiO2以及UCNPs@SiO2-APTES化學性質之探討:Zeta potential以及FT-IR 130
5.4.3 定量分析:UCNPs@SiO2-APTES/SPDP、PEGylate-UCNPs@SiO2 : UV-Vis以及Zeta potential 132
5.4.4 UCNPs@SiO2-APTES/SPDP定量分析:PEGylated UCNPs@SiO2-DOX、folate-PEGylated UCNPs@SiO2-DOX 以及caged folate-PEGylated UCNPs@SiO2-DOX: UV-Vis以及FL 134
5.4.5近紅外光照射UCNPs@SiO2奈米粒子水溶液之溫度探討 139
5.4.6 多功能性上轉換奈米粒子caged folate-PEGylated UCNPs@SiO2-DOX以近紅外光驅動光罩分子釋放於癌細胞標定之試驗:ICP、confocal image以及HPLC 140
5.4.7 多功能性上轉換奈米粒子caged folate-PEGylated UCNPs@SiO2-DOX以近紅外光驅動光罩分子釋放後活化DOX化學毒性之研究:細胞存活率測試 (MTT檢驗法) 145
5.4.8 多功能性上轉換奈米粒子caged folate-PEGylated UCNPs@SiO2-DOX以近紅外光驅動光罩分子釋放後活化DOX化學毒性之研究:利用雷射掃描式共軛焦顯微鏡 (laser scanning confocal microscope)觀察細胞標定與Dox釋放行為 148
5.4.9 多功能性上轉換奈米粒子caged folate-PEGylated UCNPs@SiO2-DOX以近紅外光驅動光罩分子釋放後活化DOX化學毒性於活體 (in vivo) 之研究:非侵入式活體影像系統(Caliper IVIS system) 150
5.5結論 155
參考文獻 156
自述 178
附錄 180
參考文獻 1. Faraday, M., The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light. Philos. Tran. R. Soc. Lond. 1857, 147 (0), 145-181.
2. Gimzewski, J.; Humbert, A., Scanning tunneling microscopy of surface microstructure on rough surfaces. IBM J. Res. Dev. 1986, 30 (5), 472-477.
3. Kroto, H. W.; Allaf, A. W.; Balm, S. P., C60: Buckminsterfullerene. Chem. Rev. 1991, 91 (6), 1213-1235.
4. Alivisatos, A. P., Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996, 100.
5. 伊邦躍, 奈米時代. 五南出版社, 2002.
6. Stewart, M.; Anderton, C.; Thompson, L.; Maria, J.; Gray, S.; Rogers, J.; Nuzzo, R., Nanostructured plasmonic sensors. Chem. Rev. 2008, 108 (2), 494-521.
7. Lin, Y.-S.; Wu, S.-H.; Hung, Y.; Chou, Y.-H.; Chang, C.; Lin, M.-L.; Tsai, C.-P.; Mou, C.-Y., Multifunctional composite nanoparticles: magnetic, luminescent, and mesoporous. Chem. Mater. 2006, 18, 5170-5172.
8. Zhong, L. W.; Janet, M. P.; Travis, C. G.; Mostafa, A. E.-S., Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals. J. Phys. Chem. B. 1998, 102.
9. 王崇人, 科學發展月刊. 2002, 48, 354.
10. Memming, R., Semiconductor electrochemistry. Wiley-vch 2008.
11. Akerman, M.; Chan, W.; Laakkonen, P.; Bhatia, S.; Ruoslahti, E., Nanocrystal targeting in vivo. PNAS 2002, 99 (20), 12617-12621.
12. Liu, J.; Lu, Y., A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 2003, 125 (22), 6642-6643.
13. Hoshino, A.; Fujioka, K.; Oku, T.; Nakamura, S.; Suga, M.; Yamaguchi, Y.; Suzuki, K.; Yasuhara, M.; Yamamoto, K., Quantum dots targeted to the assigned organelle in living cells. J. Microbiol. Immunol. 2004, 48 (12), 985-994.
14. Suzuki, K. G.; Fujiwara, T. K.; Edidin, M.; Kusumi, A., Dynamic recruitment of phospholipase C gamma at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J. Cell Biol. 2007, 177 (4), 731-742.
15. (a) Lipka, J.; Semmler-Behnke, M.; Sperling, R. A.; Wenk, A.; Takenaka, S.; Schleh, C.; Kissel, T.; Parak, W. J.; Kreyling, W. G., Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials 2010, 31 (25), 6574-6581; (b) Niidome, T.; Yamagata, M.; Okamoto, Y.; Akiyama, Y.; Takahashi, H.; Kawano, T.; Katayama, Y.; Niidome, Y., PEG-modified gold nanorods with a stealth character for in vivo applications. J. Controlled Release 2006, 114 (3), 343-347.
16. Kuo, Y. C.; Jen, C. P.; Chen, Y. H.; Su, C. H.; Tsai, S. H.; Yeh, C. S., Assembly of hybrid oligonucleotide modified gold (Au) and alloy nanoparticles building blocks. J. Nanosci. Nanotechno. 2006, 6 (1), 95-100.
17. Shieh, D. B.; Su, C. H.; Chang, F. Y.; Wu, Y. N.; Su, W. C.; Hwu, J. R.; Chen, J. H.; Yeh, C. S., Aqueous nickel-nitrilotriacetate modified Fe3O4-NH3+ nanoparticles for protein purification and cell targeting. Nanotechnology 2006, 17 (16), 4174-4182.
18. Turkevich, J.; Garton, G.; Stevenson, P. C., The color of colloidal gold. J. Colloid Sci. 1954, 9.
19. Mathias, B.; Merryl, W.; Donald, B.; David, J. S.; Robin, W., Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system. J. Chem. Soc. Chem. Commun. 1994.
20. Kuo, C. H.; Chiang, T. F.; Chen, L. J.; Huang, M. H., Synthesis of highly faceted pentagonal- and hexagonal-shaped gold nanoparticles with controlled sizes by sodium dodecyl sulfate. Langmuir 2004, 20 (18), 7820-7824.
21. Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T., Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phy. Chem. B 2005, 109 (29), 13857-13870.
22. Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P., Platonic gold nanocrystals. Angew. Chem. Int. Ed. 2004, 43 (28), 3673-3677.
23. (a) Wang, Z. L., Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B. 2000, 104; (b) Andrea, R. T.; Susan, H.; Peidong, Y., Shape control of colloidal metal nanocrystals. Small 2008, 4, 310-325.
24. Papavassiliou, G. C., Surface plasmons in small Au-Ag alloy particles. J. Phy. F: Met. Phy. 1976, 6 (4), L103.
25. Shi, H.; Zhang, L.; Cai, W., Composition modulation of optical absorption in AgAu alloy nanocrystals in situ formed within pores of mesoporous silica. J. Appl. Phys. 2000, 87, 1572-1574.
26. (a) Chen, Y.-H.; Yeh, C.-S., A new approach for the formation of alloy nanoparticles: laser synthesis of gold–silver alloy from gold–silver colloidal mixtures. Chem. Commun. 2001, 4, 371-372; (b) Chen, Y.-H.; Tseng, Y.-H.; Yeh, C.-S., Laser-induced alloying Au–Pd and Ag–Pd colloidal mixtures: the formation of dispersed Au/Pd and Ag/Pd nanoparticles. J. Mater. Chem. 2002, 12 (5), 1419-1422; (c) Tsai, S.-H.; Liu, Y.-H.; Wu, P.-L.; Yeh, C.-S., Preparation of Au–Ag–Pd trimetallic nanoparticles and their application as catalysts. J. Mater. Chem. 2003, 13, 978-980.
27. Luis, M. L.-M.; Michael, G.; Paul, M., Synthesis of nanosized gold−silica core−shell particles. Langmuir 1996, 12.
28. Sun, Y.; Mayers, B.; Xia, Y., Metal Nanostructures with hollow interiors. Adv. Mater. 2003, 15, 641-646.
29. Prashant, K. J.; Xiaohua, H.; Ivan, H. E.-S.; Mostafa, A. E.-S., Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2007, 2, 107-118.
30. Eustis, S.; el-Sayed, M. A., Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35 (3), 209-217.
31. Yu, C.; Irudayaraj, J., Multiplex biosensor using gold nanorods. Analytical chemistry 2007, 79 (2), 572-579.
32. Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A., Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277 (5329), 1078-1081.
33. Thompson, D.; Enright, A.; Faulds, K.; Smith, W.; Graham, D., Ultrasensitive DNA detection using oligonucleotide-silver nanoparticle conjugates. Analytical chemistry 2008, 80 (8), 2805-2810.
34. Lee, J. S.; Han, M. S.; Mirkin, C. A., Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed. 2007, 46 (22), 4093-4096.
35. Beqa, L.; Singh, A. K.; Khan, S. A.; Senapati, D.; Arumugam, S. R.; Ray, P. C., Gold nanoparticle-based simple colorimetric and ultrasensitive dynamic light scattering assay for the selective detection of Pb(II) from paints, plastics, and water samples. ACS appl. Mater. Interfaces 2011, 3 (3), 668-673.
36. Weissleder, R., A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19 (4), 316-317.
37. He, X.; Wang, K.; Cheng, Z., In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes. Nanobiotechnol 2010, 2 (4), 349-366.
38. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H., Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4 (6), 435-446.
39. Wang, F.; Liu, X., Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 2009, 38 (4), 976-989.
40. Diamente, P. R.; Raudsepp, M.; Veggel, F. C. J. M. v., Dispersible Tm3+-doped nanoparticles that exhibit strong 1.47 μm photoluminescence. Adv. Funct. Mater. 2007, 17, 363-368.
41. (a) Zhenhe, X.; Chunxia, L.; Piaoping, Y.; Cuimiao, Z.; Shanshan, H.; Jun, L., Rare earth fluorides nanowires/nanorods derived from hydroxides: hydrothermal synthesis and luminescence properties. Cryst. Growth Des. 2009, 9, 4752-4758; (b) Yan, R. X.; Li, Y. D., Down/Up Conversion in Ln3+-Doped YF3 Nanocrystals. Adv. Funct. Mater. 2005, 15, 763-770.
42. Vennerberg, D.; Lin, Z., Upconversion nanocrystals: Synthesis, properties, assembly and applications. Sci. Adv. Mater. 2011, 3 (1), 26-40.
43. Bloembergen, N., Solid state infrared quantum counters. Phys. Rev. Lett. 1959, 2 (3), 84-85.
44. Heer, S.; Kompe, K.; Godel, H. U.; Haase, M., Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 2004, 16, 2102-2105.
45. (a) Thoma, R. E.; Insley, H.; Hebert, G. M., The sodium fluoride-lanthanide trifluoride systems. Inorg. Chem. 1966, 5; (b) Wang, F.; Han, Y.; Lim, C. S.; Lu, Y.; Wang, J.; Xu, J.; Chen, H.; Zhang, C.; Hong, M.; Liu, X., Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463 (7284), 1061-1065.
46. Mai, H. X.; Zhang, Y. W.; Si, R.; Yan, Z. G.; Sun, L. D.; You, L. P.; Yan, C. H., High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J. Am. Chem. Soc. 2006, 128 (19), 6426-6436.
47. (a) Aebischer, A.; Hostettler, M.; Hauser, J.; Kramer, K.; Weber, T.; Gudel, H. U.; Burgi, H. B., Structural and spectroscopic characterization of active sites in a family of light-emitting sodium lanthanide tetrafluorides. Angew. Chem. Int. Ed. 2006, 45 (17), 2802-2806; (b) Boyer, J. C.; Cuccia, L. A.; Capobianco, J. A., Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano lett. 2007, 7 (3), 847-852; (c) Wang, G.; Peng, Q.; Li, Y., Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc. 2009, 131 (40), 14200-14201.
48. Marie-France, J., Photon avalanche upconversion in rare earth laser materials. Opt. Mater. 1999, 11, 181-203.
49. Auzel, F. E., Materials and devices using double-pumped-phosphors with energy transfer. Proceedings of the IEEE 1973, 61 (6), 758-786.
50. Chivian, J. S.; Case, W.; Eden, D., The photon avalanche: A new phenomenon in Pr based infrared quantum counters. Appl. Phys. Lett. 1979, 35, 124-125.
51. Hans, U. G.; Markus, P., Near-infrared to visible photon upconversion processes in lanthanide doped chloride, bromide and iodide lattices. J. Alloys Compd. 2000, 303, 307-315.
52. Wang, M.; Abbineni, G.; Clevenger, A.; Mao, C.; Xu, S., Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomed. Nnanotech. Boil. Med. 2011, 7 (6), 710-729.
53. Menyuk, N.; Dwight, K.; Pierce, J., NaYF4: Yb, Er—an efficient upconversion phosphor. Appl. Phys. Lett. 1972, 21 (4), 159-161.
54. Guangshun, Y.; Huachang, L.; Shuying, Z.; Yue, G.; Wenjun, Y.; Depu, C.; Liang-Hong, G., Synthesis, characterization, and biological application of size-Controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. Nano Lett. 2004, 4, 2191-2196.
55. Zhang, Y. W.; Sun, X.; Si, R.; You, L. P.; Yan, C. H., Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J. Am. Chem. Soc. 2005, 127 (10), 3260-3261.
56. (a) Boyer, J. C.; Vetrone, F.; Cuccia, L. A.; Capobianco, J. A., Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 2006, 128 (23), 7444-7445; (b) Mai, H. X.; Zhang, Y. W.; Sun, L. D.; Yan, C. H., Size- and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy. J. Phys. Chem. C 2007, 111, 13730-13739; (c) Yang, W.; Fengqi, L.; Xinrong, Z.; Depu, C., Synthesis of Oil-Dispersible Hexagonal-Phase and Hexagonal-Shaped NaYF4 :Yb,Er Nanoplates. Chem. Mater. 2006, 18, 5733-5737.
57. Lin, W.; Wenjun, Z.; Weihong, T., Bioconjugated silica nanoparticles: development and applications. Nano Research 2008, 1, 99-115.
58. (a) Helmut, S.; Pavel, P.; Karsten, K.; Markus, H., Lanthanide-doped NaYF4 nanocrystals in aqueous solution displaying strong up-conversion emission. Chem. Mater. 2007, 19, 1396-1400; (b) Chen, Z.; Chen, H.; Hu, H.; Yu, M.; Li, F.; Zhang, Q.; Zhou, Z.; Yi, T.; Huang, C., Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J. Am. Chem. Soc. 2008, 130 (10), 3023-3029; (c) Wang, L.; Yan, R.; Huo, Z.; Wang, L.; Zeng, J.; Bao, J.; Wang, X.; Peng, Q.; Li, Y., Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. 2005, 44 (37), 6054-6057.
59. Guang-Shun, Y.; Gan-Moog, C., Water-soluble NaYF4:Yb,Er(Tm)/NaYF4 polymer core/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 2007, 19, 341-343.
60. (a) Yi, G. S.; Chow, G. M., Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 2006, 16, 2324-2329; (b) Boyer, J. C.; Manseau, M. P.; Murray, J. I.; van Veggel, F. C., Surface modification of upconverting NaYF4 nanoparticles with PEG-phosphate ligands for NIR (800 nm) biolabeling within the biological window. Langmuir 2010, 26 (2), 1157-1164.
61. Li, Z.; Zhang, Y., Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission. Angew. Chem. Int. Ed. 2006, 45 (46), 7732-7735.
62. http://en.wikipedia.org/wiki/File:MolecularImagingTherapy.jpg.
63. (a) Cui, S.; Yin, D.; Chen, Y.; Di, Y.; Chen, H.; Ma, Y.; Achilefu, S.; Gu, Y., In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS nano 2013, 7 (1), 676-688; (b) Liu, Q.; Yang, T.; Feng, W.; Li, F., Blue-emissive upconversion nanoparticles for low-power-excited bioimaging in vivo. J. Am.Chem. Soc. 2012, 134 (11), 5390-5397; (c) Fangfang, W.; Xiaojun, Y.; Lin, M.; Bingrong, H.; Na, N.; Yingchun, E.; Dacheng, H.; Jin, O., Multifunctional up-converting nanocomposites with multimodal imaging and photosensitization at near-infrared excitation. J. Mater.Chem. 2012, 22, 24597-24604.
64. Liang, C.; Kai, Y.; Mingwang, S.; Shuit-Tong, L.; Zhuang, L., Multicolor In Vivo Imaging of Upconversion Nanoparticles with Emissions Tuned by Luminescence Resonance Energy Transfer. J.Phy. Chem. C 2011, 115, 2686-2692.
65. Torchilin, V., Recent advances with liposomes as pharmaceutical carriers. Nature reviews. Drug discovery 2005, 4 (2), 145-160.
66. Farokhzad, O.; Jon, S.; Khademhosseini, A.; Tran, T.-N. T.; Lavan, D.; Langer, R., Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer research 2004, 64 (21), 7668-7672.
67. (a) Rijcken, C.; Soga, O.; Hennink, W.; van Nostrum, C., Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: an attractive tool for drug delivery. J. Controlled Release 2007, 120 (3), 131-148; (b) Min-Hui, L.; Patrick, K., Stimuli-responsive polymer vesicles. Soft Matter 2009, 5, 927-937.
68. Zhu, Y.; Ikoma, T.; Hanagata, N.; Kaskel, S., Rattle-type Fe3O4@SiO2 hollow mesoporous spheres as carriers for drug delivery. Small 2010, 6 (3), 471-478.
69. Meng, F.; Zhong, Z.; Feijen, J., Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules 2009, 10 (2), 197-209.
70. Hu, K.-W.; Hsu, K.-C.; Yeh, C.-S., pH-Dependent biodegradable silica nanotubes derived from Gd(OH)3 nanorods and their potential for oral drug delivery and MR imaging. Biomaterials 2010, 31 (26), 6843-6848.
71. Huang, C.-C.; Huang, W.-L.; Yeh, C.-S., Shell-by-shell synthesis of multi-shelled mesoporous silica nanospheres for optical imaging and drug delivery. Biomaterials 2011, 32 (2), 556-564.
72. Yan, B.; Boyer, J. C.; Branda, N. R.; Zhao, Y., Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles. J. Am. Chem. Soc. 2011, 133 (49), 19714-19717.
73. Anastas, P. T. W., J. C., In Green Chemistry:Theory and Practice; Oxford University Press, New York, 1998.; p 30.
74. (a) Huang, C. C.; Yang, Z.; Chang, H. T., Synthesis of dumbbell-shaped Au-Ag core-shell nanorods by seed-mediated growth under alkaline conditions. Langmuir 2004, 20 (15), 6089-6092; (b) Huang, Y.-F.; Lin, Y.-W.; Chang, H.-T., Growth of various Au–Ag nanocomposites from gold seeds in amino acid solutions. Nanotechnology 2006, 17 (19), 4885.
75. Raveendran, P.; Fu, J.; Wallen, S. L., Completely "green" synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 2003, 125 (46), 13940-13941.
76. Poovathinthodiyil, R.; Jie, F.; Scott, L. W., A simple and “green” method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles. Green Chemistry 2006, 8, 34-38.
77. (a) Michael, O. l.; Christian, J.; Jorgen, O.; Jochen, M.; Elmar, Z., Green photochemistry: solar photooxygenations with medium concentrated sunlight. Green Chemistry 2005, 7, 35-38.
78. Shouan, D.; Chun, T.; Hua, Z.; Huaizhi, Z., Photochemical synthesis of gold nanoparticles by the sunlight radiation using a seeding approach. Gold Bulletin 2004, 37, 187-195.
79. (a) Kenneth, R. B.; Daniel, G. W.; Michael, J. N., Seeding of colloidal Au nanoparticle solutions. 2. improved control of particle size and shape. Chem. Mater. 2000, 12, 306-313; (b) Kenneth, R. B.; Michael, J. N., Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces. Langmuir 1998, 14, 726-728.
80. (a) Needleman, H., Lead poisoning. Annual review of medicine 2004, 55, 209-222; (b) Schroeder, H.; Tipton, I., The human body burden of lead. Archives of environmental health 1968, 17 (6), 965-978.
81. http://water.epa.gov/drink/contaminants/basicinformation/lead.cfm,accessed April 2013.
82. Youngjin, K.; Robert, C. J.; Joseph, T. H., Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett. 2001, 1, 165-167.
83. Huang, K. W.; Yu, C. J.; Tseng, W. L., Sensitivity enhancement in the colorimetric detection of lead (II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion. Biosens. Bio. 2010, 25 (5), 984-989.
84. (a) Liu, J.; Lu, Y., A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J.Am. Chem. Soc. 2003, 125 (22), 6642-6643; (b) Zidong, W.; Jung Heon, L.; Yi, L., Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv. Mater. 2008, 20, 3263–3267.
85. Chen, Y. Y.; Chang, H. T.; Shiang, Y. C.; Hung, Y. L.; Chiang, C. K.; Huang, C. C., Colorimetric assay for lead ions based on the leaching of gold nanoparticles. Anal. Chem. 2009, 81 (22), 9433-9439.
86. http://en.wikipedia.org/wiki/Air_mass_(solar_energy).
87. Liu, H.; Gardea-Torresdey, J., Structure shape and stability of nanometric sized particles. J. Vac. Sci. Technol. B 2001, 19, 1091-1104.
88. (a) Alistair, M.; Donald, H. B.; Smith, W. E.; Martin, G.; Lewis, W., X-ray photoelectron spectra of some gold compounds. Dalton Transactions 1980, 767-770; (b) Tselesh, A. S., Anodic behaviour of tin in citrate solutions: The IR and XPS study on the composition of the passive layer. Thin Solid Films 2008, 516, 6253-6260.
89. Seah, M. P., Post-1989 calibration energies for X-ray photoelectron spectrometers and the 1990 Josephson constant. Surf. Interface Anal. 1989, 14, 488.
90. Li, D.; He, Q.; Cui, Y.; Duan, L.; Li, J., Immobilization of glucose oxidase onto gold nanoparticles with enhanced thermostability. Biochem. Biophys. Res. Commun. 2007, 355 (2), 488-493.
91. Enustun, B. V.; John, T., J. Am. Chem. Soc. 1963, 85, 3317-3328.
92. Chow, M. K.; Zukoski, C. F., Gold sol formation mechanisms: role of colloidal stability. J. Colloid Interface Sci. 1994, 165, 97-109.
93. (a) Liu, J.; Lu, Y., A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 2003, 125 (22), 6642-66433; (b) Slocik, J. M.; Zabinski, J. S., Jr.; Phillips, D. M.; Naik, R. R., Colorimetric response of peptide-functionalized gold nanoparticles to metal ions. Small 2008, 4 (5), 548-551; (c) Chen, Y.-Y.; Chang, H.-T.; Shiang, Y.-C.; Hung, Y.-L.; Chiang, C.-K.; Huang, C.-C., Colorimetric assay for lead ions based on the leaching of gold nanoparticles. Analytical chemistry 2009, 81 (22), 9433-9439; (d) Chai, F.; Wang, C.; Wang, T.; Li, L.; Su, Z., Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl. Mat. Interfaces 2010, 2 (5), 1466-1470.
94. Liu, J.; Yang, H.; Shi, H.; Shen, C.; Zhou, W.; Dai, Q.; Jiang, Y., Blood copper, zinc, calcium, and magnesium levels during different duration of pregnancy in Chinese. Biol. Trace Elem. Res. 2010, 135 (1-3), 31-37.
95. Beauchemin, D., Inductively coupled plasma mass spectrometry. Analytical chemistry 2008, 80 (12), 4455-4486.
96. (a) Yolanda, V.; Amanda, E. H.; Bauer, J. C.; Raymond, E. S., Nanocrystal conversion chemistry: A unified and materials-general strategy for the template-based synthesis of nanocrystalline solids. J. Solid State Chem. 2008, 181, 1509-1523; (b) Jana, N. R.; Gearheart, L.; Murphy, C. J., Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 2001, 13, 1389-1393; (c) Yin, Y.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P., Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004, 304 (5671), 711-714; (d) McEachran, M.; Keogh, D.; Pietrobon, B.; Cathcart, N.; Gourevich, I.; Coombs, N.; Kitaev, V., Ultrathin gold nanoframes through surfactant-free templating of faceted pentagonal silver nanoparticles. J. Am. Chem. Soc. 2011, 133 (21), 8066-8069; (e) Liusman, C.; Li, S.; Chen, X.; Wei, W.; Zhang, H.; Schatz, G. C.; Boey, F.; Mirkin, C. A., Free-standing bimetallic nanorings and nanoring arrays made by on-wire lithography. ACS nano 2010, 4 (12), 7676-7682; (f) Yugang, S.; Brian, T. M.; Younan, X., Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2002, 2, 481-485.
97. Gonzalez, E.; Arbiol, J.; Puntes, V. F., Carving at the nanoscale: sequential galvanic exchange and Kirkendall growth at room temperature. Science 2011, 334 (6061), 1377-1380.
98. Sun, Y.; Xia, Y., Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298 (5601), 2176-2179.
99. Mohammad Mehdi, S.; Michel, B.; Shaowen, C.; Xiao, H.; Somaye, S.; Erik, M.; Daniel, A.; Yee Yan, T.; Bo, L.; Say Chye Joachim, L.; Hua, Z.; Freddy, B.; Can, X., Gold coating of silver nanoprisms. Adv. Funct. Mater. 2012, 22, 849-854.
100. Damian, A.; Deirdre, M. L.; Matthew, G.; John, M. K., Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv. Funct. Mater. 2008, 18, 2005-2016.
101. Skrabalak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y., Gold nanocages: synthesis, properties, and applications. Acc.Chem. Res. 2008, 41 (12), 1587-1595.
102. (a) Rodriguez-Fernandez, J.; Perez-Juste, J.; Mulvaney, P.; Liz-Marzan, L. M., Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes. J. Phy. Chem. B 2005, 109 (30), 14257-14261; (b) Khanal, B. P.; Zubarev, E. R., Purification of high aspect ratio gold nanorods: complete removal of platelets. J. Am. Chem. Soc. 2008, 130 (38), 12634-12635.
103. Praharaj, S.; Ghosh, S. K.; Nath, S.; Kundu, S.; Panigrahi, S.; Basu, S.; Pal, T., Size-selective synthesis and stabilization of gold organosol in C(n)TAC: enhanced molecular fluorescence from gold-bound fluorophores. J. Phy. Chem. B 2005, 109 (27), 13166-13174.
104. (a) Damian, A.; Matthew, G.; John, M. K.; Yurii, K. G. k., From Ag Nanoprisms to Triangular AuAg Nanoboxes. Adv. Funct. Mater. 2010, 20, 1329–1338; (b) Métraux, G. S.; Cao, Y. C.; Jin, R.; Mirkin, C. A., Triangular nanoframes made of gold and silver. Nano Lett. 2003, 3 (4), 519-522.
105. (a) Byungkwon, L.; Hirokazu, K.; Pedro, H. C. C.; Lawrence, F. A.; Jingyue, L.; Younan, X., New insights into the growth mechanism and surface structure of palladium nanocrystals. Nano Res. 2010, 3, 180-188; (b) Laure, B.; Cedric, B.; Lionel, N.; David, G.; Jean Pierre, J.; Cécile, T.; Denis, U.; Gilles, B.; Clément, S., Formation of palladium nanostructures in a seed-mediated synthesis through an oriented-attachment-directed aggregation. Chem. Mater. 2009, 21, 2668-2678.
106. (a) Berhault, G.; Bausach, M.; Bisson, L.; Becerra, L.; Thomazeau, C.; Uzio, D., Seed-mediated synthesis of Pd nanocrystals: factors influencing a kinetic - or thermodynamic-controlled growth regime. J. Phys. Chem. C 2007, 111, 5915-5925; (b) Feng-Ru, F.; Adel, A.; Ujjal Kumar, S.; Jian-Bin, C.; Zhao-Xiong, X.; Jian-Feng, L.; Bin, R.; Zhong-Qun, T., An effective strategy for room-temperature synthesis of single-crystalline palladium nanocubes and nanodendrites in aqueous solution. Cryst. Growth Des. 2009, 9, 2335-2340.
107. (a) Bernadett, V.; Zoltán, K., Size-Selective Synthesis of Cubooctahedral palladium particles mediated by metallomicelles. Langmuir 2003, 19, 4817-4824; (b) Aherne, D.; Charles, D. E.; Brennan-Fournet, M. E.; Kelly, J. M.; Gun'ko, Y. K., Etching-resistant silver nanoprisms by epitaxial deposition of a protecting layer of gold at the edges. Langmuir 2009, 25 (17), 10165-10173.
108. Arnal, P.; Comotti, M.; Schüth, F., High-temperature-stable catalysts by hollow sphere encapsulation. Angew. Chem. Int. Ed. 2006, 45 (48), 8224-8227.
109. (a) Gao, Y.; Ding, X.; Zheng, Z.; Cheng, X.; Peng, Y., Template-free method to prepare polymer nanocapsules embedded with noble metal nanoparticles. Chem. Commun. 2007, 36, 3720-3722; (b) Minsuk, K.; Kwonnam, S.; Hyon Bin, N.; Taeghwan, H., Synthesis of nanorattles composed of gold nanoparticles encapsulated in mesoporous carbon and polymer shells. Nano Lett. 2002, 2, 1383-1387.
110. Liu, Y.; Miyoshi, H.; Nakamura, M., Novel drug delivery system of hollow mesoporous silica nanocapsules with thin shells: preparation and fluorescein isothiocyanate (FITC) release kinetics. Colloids surf., B 2007, 58 (2), 180-187.
111. (a) Cavaliere-Jaricot, S.; Darbandi, M.; Nann, T., Au-silica nanoparticles by "reverse" synthesis of cores in hollow silica shells. Chem. Commun. 2007, 20, 2031-2033; (b) Deng, Z.; Chen, M.; Zhou, S.; You, B.; Wu, L., A novel method for the fabrication of monodisperse hollow silica spheres. Langmuir 2006, 22 (14), 6403-6407.
112. (a) Yugang, S.; Younan, X., Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction. Nano Lett. 2003, 3, 1569-1572; (b) Sun, Y.; Xia, Y., Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 2004, 126 (12), 3892-3901.
113. (a) Lu, X.; Tuan, H. Y.; Chen, J.; Li, Z. Y.; Korgel, B. A.; Xia, Y., Mechanistic studies on the galvanic replacement reaction between multiply twinned particles of Ag and HAuCl4 in an organic medium. J. Am. Chem. Soc. 2007, 129 (6), 1733-1742; (b) Moskovits, M.; Srnová-Šloufová, I.; Vlčková, B., Bimetallic Ag–Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum. J. Chem. Phys. 2002, 116, 10435-10446; (c) Benito, R.-G.; Andrew, B.; Masashi, W.; Christopher, J. K.; Luis, M. L. M., Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties. J. Mater.Chem. 2005, 15, 1755-1759.
114. Haiqing, L.; Chang-Sik, H.; Il, K., Fabrication of optically tunable silica nanocapsules containing Ag/Au nanostructures by confined galvanic replacement reaction. J Nanopart Res. 2009, 12, 985–992.
115. Werner, S.; Arthur, F.; Ernst, B., Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968, 26, 62-69.
116. Siekkinen, A.; McLellan, J.; Chen, J.; Xia, Y., Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chem. Phys. Lett. 2006, 432 (4-6), 491-496.
117. Pierre-Yves, S.; Ronaldo, H.-U.; Nicolas, D.; Venugopal, V.; Kamar Tekaia, E., Preparation of colloidal silver dispersions by the polyol process. Part 1:Synthesis and characterization. J. Mater. Chem. 1996, 6, 573-577.
118. Zhang, Q.; Xie, J.; Lee, J.; Zhang, J.; Boothroyd, C., Synthesis of Ag@AgAu metal core/alloy shell bimetallic nanoparticles with tunable shell compositions by a galvanic replacement reaction. Small 2008, 4 (8), 1067-1071.
119. John, T.; Peter Cooper, S.; James, H., A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951, 11, 55-75.
120. Xia, H.; Bai, S.; Hartmann, J.; Wang, D., Synthesis of monodisperse quasi-spherical gold nanoparticles in water via silver(I)-assisted citrate reduction. Langmuir 2010, 26 (5), 3585-3589.
121. Dan, V. G.; Egon, M., Tailoring the particle size of monodispersed colloidal gold. Colloids Surf., A. 1999, 146, 139-152.
122. (a) Jianmin, W.; Michael, J. S., Chitosan hydrogel-capped porous siO2 as a pH responsive nano-valve for triggered release of insulin. Adv. Funct. Mater. 2009, 19, 733-741; (b) Yoshikawa, H. Y.; Rossetti, F. F.; Kaufmann, S.; Kaindl, T.; Madsen, J.; Engel, U.; Lewis, A. L.; Armes, S. P.; Tanaka, M., Quantitative evaluation of mechanosensing of cells on dynamically tunable hydrogels. J. Am. Chem. Soc. 2011, 133 (5), 1367-1374.
123. Jean-François, L., Thermo-switchable materials prepared using the OEGMA-platform. Adv. Mater. 2011, 23, 2237-2243.
124. (a) Choi, S.; Thomas, T.; Li, M.-H.; Kotlyar, A.; Desai, A.; Baker, J., Light-controlled release of caged doxorubicin from folate receptor-targeting PAMAM dendrimer nanoconjugate. Chem. Comm. 2010, 46 (15), 2632-2634; (b) Carling, C.-J.; Nourmohammadian, F.; Boyer, J.-C.; Branda, N., Remote-control photorelease of caged compounds using near-infrared light and upconverting nanoparticles. Angew. Chem. Int. Ed. 2010, 49 (22), 3782-3785; (c) Yan, B.; Boyer, J.-C.; Habault, D.; Branda, N.; Zhao, Y., Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J. Am. Chem. Soc. 2012, 134 (40), 16558-16561; (d) Yang, Y.; Shao, Q.; Deng, R.; Wang, C.; Teng, X.; Cheng, K.; Cheng, Z.; Huang, L.; Liu, Z.; Liu, X.; Xing, B., In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew. Chem. Int. Ed. 2012, 51 (13), 3125-3129.
125. Winter, J. O.; Liu, T. Y.; Korgel, B. A.; Schmidt, C. E., Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells. Adv.Mater. 2001, 13, 1673-1677.
126. (a) Dahan, M.; Lévi, S.; Luccardini, C.; Rostaing, P.; Riveau, B.; Triller, A., Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 2003, 302 (5644), 442-445; (b) Empedocles; Norris; Bawendi, Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots. Phys. Rev. Lett. 1996, 77 (18), 3873-3876.
127. (a) Qingtao, C.; Xin, W.; Fenghua, C.; Qingbin, Z.; Bing, D.; Hui, Y.; Guixia, L.; Yimin, Z., Functionalization of upconverted luminescent NaYF4 : Yb/Er nanocrystals by folic acid–chitosan conjugates for targeted lung cancer cell imaging. J. Mater. Chem. 2011, 21, 7661-7667; (b) Hilgenbrink, A.; Low, P., Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J. Pharm. Sci. 2005, 94 (10), 2135-2146.
128. (a) Sudimack, J.; Lee, R., Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 2000, 41 (2), 147-162; (b) Kamen, B.; Smith, A., A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Adv. Drug Deliv. Rev. 2004, 56 (8), 1085-1097.
129. (a) Elnakat, H.; Ratnam, M., Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv. Drug Deliv. Rev. 2004, 56 (8), 1067-1084; (b) Weitman, S.; Lark, R.; Coney, L.; Fort, D.; Frasca, V.; Zurawski, V.; Kamen, B., Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer research 1992, 52 (12), 3396-3401.
130. Wang, C.; Cheng, L.; Liu, Z., Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 2011, 32 (4), 1110-1120.
131. (a) Andrew, M. P.; Peter, K., Synthesis of a new hydrophilic o-nitrobenzyl photocleavable linker suitable for use in chemical proteomics. Tetrahedron Lett. 2005, 46, 8241-8244; (b) James, F. C.; Jean, M. J. F., Photogeneration of organic bases from o-nitrobenzyl-derived carbamates. J. Am. Chem. Soc. 1991, 113, 4303-4313.
132. Shamay, Y.; Adar, L.; Ashkenasy, G.; David, A., Light induced drug delivery into cancer cells. Biomaterials 2011, 32 (5), 1377-1386.
133. Fan, N. C.; Cheng, F. Y.; Ho, J. A.; Yeh, C. S., Photocontrolled targeted drug delivery: photocaged biologically active folic acid as a light-responsive tumor-targeting molecule. Angew. Chem. Int. Ed. 2012, 51 (35), 8806-8810.
134. (a) Cheng, F.-Y.; Su, C.-H.; Wu, P.-C.; Yeh, C.-S., Multifunctional polymeric nanoparticles for combined chemotherapeutic and near-infrared photothermal cancer therapy in vitro and in vivo. Chem. Commun. 2010, 46 (18), 3167-3169; (b) Tanya, S. H.; Travis, L. J.; Tetyana, Y.; Kumaradas, J. C.; Warren, C. W. C., Enhancing the Toxicity of Cancer Chemotherapeutics with Gold Nanorod Hyperthermia. Adv. Mater. 2008, 20, 3832-3838.
135. (a) You, J.; Zhang, G.; Li, C., Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 2010, 4 (2), 1033-1041; (b) Jaemoon, Y.; Jaewon, L.; Jinyoung, K.; Seung Jae, O.; Hyun-Ju, K.; Joo-Hiuk, S.; Kwangyeol, L.; Jin-Suck, S.; Yong-Min, H.; Seungjoo, H., Smart Drug-Loaded Polymer Gold Nanoshells for Systemic and Localized Therapy of Human Epithelial Cancer. Adv. Mater. 2009, 21, 4339-4342.
136. Yavuz, M.; Cheng, Y.; Chen, J.; Cobley, C.; Zhang, Q.; Rycenga, M.; Xie, J.; Kim, C.; Song, K.; Schwartz, A.; Wang, L.; Xia, Y., Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 2009, 8 (12), 935-939.
137. (a) Li, Z.; Zhang, Y., Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission. Angew. Chem. Int. Ed. 2006, 45 (46), 7732-7735; (b) Wang, F.; Liu, X., Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 2008, 130 (17), 5642-5643; (c) Wang, F.; Han, Y.; Lim, C.; Lu, Y.; Wang, J.; Xu, J.; Chen, H.; Zhang, C.; Hong, M.; Liu, X., Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463 (7284), 1061-1065; (d) Li, L.-L.; Zhang, R.; Yin, L.; Zheng, K.; Qin, W.; Selvin, P.; Lu, Y., Biomimetic surface engineering of lanthanide-doped upconversion nanoparticles as versatile bioprobes. Angew. Chem. Int. Ed. 2012, 51 (25), 6121-6125.
138. (a) Idris, N.; Gnanasammandhan, M.; Zhang, J.; Ho, P.; Mahendran, R.; Zhang, Y., In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012, 18 (10), 1580-1585; (b) Li, Z. Q.; Zhang, Y.; Jiang, S., Multicolor Core/Shell-Structured Upconversion Fluorescent Nanoparticles. Adv. Mater. 2009, 21, 4765-4769.
139. Wang, F.; Banerjee, D.; Liu, Y.; Chen, X.; Liu, X., Upconversion nanoparticles in biological labeling, imaging, and therapy. The Analyst 2010, 135 (8), 1839-1854.
140. Qian, H. S.; Zhang, Y., Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence. Langmuir 2008, 24 (21), 12123-12125.
141. http://www.thermo.com/pierce.
142. Zhao, M.; Kircher, M.; Josephson, L.; Weissleder, R., Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjugate Chem. 2002, 13 (4), 840-844.
143. Greenfield, R. S.; Kaneko, T.; Daues, A.; Edson, M. A.; Fitzgerald, K. A.; Olech, L. J.; Grattan, J. A.; Spitalny, G. L.; Braslawsky, G. R., Evaluation Invitro of Adriamycin Immunoconjugates Synthesized Using an Acid-Sensitive Hydrazone Linker. Cancer research 1990, 50 (20), 6600-6607.
144. Mai, H.-X.; Zhang, Y.-W.; Si, R.; Yan, Z.-G.; Sun, L.-d.; You, L.-P.; Yan, C.-H., High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J. Am. Chem. Soc. 2006, 128 (19), 6426-6436.
145. Wang, G.; Qin, W.; Wang, L.; Wei, G.; Zhu, P.; Kim, R., Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals. Opt. Express 2008, 16 (16), 11907-11914.
146. Greenfield, R.; Kaneko, T.; Daues, A.; Edson, M.; Fitzgerald, K.; Olech, L.; Grattan, J.; Spitalny, G.; Braslawsky, G., Evaluation in vitro of adriamycin immunoconjugates synthesized using an acid-sensitive hydrazone linker. Cancer research 1990, 50 (20), 6600-6607.
147. He, Y.; Wang, X.; Jin, P.; Zhao, B.; Fan, X., Complexation of anthracene with folic acid studied by FTIR and UV spectroscopies. Spectrochim. Acta. 2009, 72 (4), 876-879.
148. Zhan, Q.; Qian, J.; Liang, H.; Somesfalean, G.; Wang, D.; He, S.; Zhang, Z.; Andersson-Engels, S., Using 915 nm laser excited Tm3+/Er3+/Ho3+ - doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. ACS nano 2011, 5 (5), 3744-3757.
149. Cheng, R.; Feng, F.; Meng, F.; Deng, C.; Feijen, J.; Zhong, Z., Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Controlled Release 2011, 152 (1), 2-12.
150. (a) Nyk, M.; Kumar, R.; Ohulchanskyy, T.; Bergey, E.; Prasad, P., High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 2008, 8 (11), 3834-3838; (b) Chatterjee, D. K.; Rufaihah, A. J.; Zhang, Y., Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 2008, 29 (7), 937-943; (c) Chen, Z.; Chen, H.; Hu, H.; Yu, M.; Li, F.; Zhang, Q.; Zhou, Z.; Yi, T.; Huang, C., Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J. Am. Chem. Soc. 2008, 130 (10), 3023-3029.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-06-19起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-06-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw