進階搜尋


下載電子全文  
系統識別號 U0026-1004201510445400
論文名稱(中文) 膽固醇與藍相液晶於可調控光子能隙與雷射元件之研究與應用
論文名稱(英文) Tunable Photonic Bandgap Device and Laser Based on Cholesteric and Blue Phase Liquid Crystal and Their Applications
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 103
學期 2
出版年 104
研究生(中文) 林嘉德
研究生(英文) Jia-De Lin
學號 L78981068
學位類別 博士
語文別 英文
論文頁數 127頁
口試委員 指導教授-李佳榮
召集委員-傅永貴
口試委員-羅光耀
口試委員-郭宗枋
口試委員-黃啟炎
口試委員-郭啟東
口試委員-許佳振
口試委員-李偉
中文關鍵字 液晶  雷射  光子晶體  偶氮苯材料 
英文關鍵字 Liquid Crystals  Lasers  Photonic Crystals  Azobenzene Materials 
學科別分類
中文摘要 由於具備製程簡單以及光學性質可藉由外加場輕易控制等優點,由具旋性的液晶材料所構成的自組裝光子晶體在軟物質光子應用上(例如:積體光路)相當具有潛力。膽固醇液晶與藍相液晶就是其中兩種具代表性之旋性液晶材料。由於材料中親手性分子作用,在膽固醇與藍相液晶內之液晶分子會自發性地排列成螺旋周期結構。此自發性形成之螺旋結構會使膽固醇與藍相液晶對圓偏振光而言具有光子能隙之特性。若在此系統中額外摻入增益介質,即可開發出以此軟物質光子晶體為基礎之光子晶體雷射。
本論文題目為『膽固醇與藍相液晶於可調控光子能隙與雷射元件之研究與應用』。主要工作包含三個部分,簡列如下:
(1) 第一部分工作主題為『偶氮親手性材料加入染料摻雜膽固醇液晶微球製作可光調控與開關之全方位輸出球狀微雷射器』。在此部分工作中,我們於膽固醇液晶微球內摻入雷射染料以及偶氮親手性分子,製作可光調控輸出雷射波長以及切換強度之球狀微雷射元件。實驗結果顯示,照射弱紫外光可調控此雷射之輸出波長,而照射強紫外光則可停止此雷射輸出。此球狀微雷射可做為微光源應用於全光學積體光路、雷射顯示器、生醫影像及治療方面。其雷射輸出隨紫外光變化的特性也可應用在紫外光微感測器上。
(2) 第二部分工作主題為『以摻雜低濃度偶氮液晶之藍相液晶製作可快速全光開關之光子能隙元件及雷射器』。本工作所製作之樣品內的偶氮液晶反式異構物在照射微弱紫外光後會快速轉變成彎曲狀順式異構物,並快速擾亂位於藍相液晶內部缺陷線與雙螺旋圓柱間之局部液晶分子排列,使原本呈BPI晶體結構排列之雙螺旋圓柱變成凌亂之類BPIII非晶狀排列,造成光子能隙快速消失。而在照射綠光之後,順式偶氮液晶異構物則快速變回反式異構物,雙螺旋圓柱快速回復至原本之晶體結構,造成光子能隙再次出現。相較於以膽固醇液晶製成之可光控光子能隙元件,此藍相光子能隙元件更具備光敏感與光控快速反應之性質,因此可使用於發展光敏感且可快速全光控之液晶雷射器上。
(3) 第二部分工作主題為『將藍相液晶填入一楔型樣品內,製作出具備大範圍調控性之可空間調控光子能隙以及雷射元件』。實驗結果顯示,在固定溫度下,由於楔型樣品之厚度梯度對藍相液晶分子提供呈現梯度分布之邊界作用力,造成長成之藍相液晶晶格常數呈現梯度分布,使得藍相楔型液晶樣品具有在空間上可連續廣範圍波段調控之光子能隙特性。此外,我們亦摻雜雷射染料於此樣品內,製作出可空間調控雷射輸出波長之雷射元件,此元件之光子能隙與雷射輸出之波長調控範圍分別可達到130奈米及70奈米,遠比以膽固醇液晶楔型樣品之調控範圍寬廣。
英文摘要 Self-assembled photonic crystals (PhCs) based on liquid crystals (LCs) with chirality have high potential for the applications (e.g., soft matter-based integrated photonic circuit) because of their simple fabrication process as well as excellently controllable photonic properties. Cholesteric liquid crystal (CLC) and blue phase (BP) liquid crystal are two most representative materials with chiralities. With the addition of the chiral molecules, the LC molecules in CLC and BP can spontaneously self-organize as helical structures. The self-assembled helical structures may induce photonic bandgap (PBG) structure for circularly polarized light in CLC and BP. Lasers based on such soft-matter PhCs can also be developed by simply doping active materials into the CLC and BP systems.
This dissertation, entitled “Tunable photonic bandgap device and laser based on cholesteric and blue phase liquid crystals and their applications”, mainly includes three works, which are briefly described as follows:
(1) The topic of the first work is “Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant.” This work presents an optically wavelength-tunable and intensity-switchable dye-doped CLC (DDCLC) spherical microlaser with an azo-chiral dopant. Experimental results present that two functions of optical control — tunability of lasing wavelength and switchability of lasing intensity — can be obtained for this spherical microlaser at low and high intensity regimes of non-polarized UV irradiation, respectively. The 3D DDCLC spherical microlaser is a highly promising controllable 3D micro-light source or microlaser for applications of 3D all-optical integrated photonics, laser displays, and biomedical imaging and therapy, and as a 3D UV microdosagemeter or microsensor.
(2) The topic of the second work is “Photosensitive and all-optically fast-controllable photonic bandgap device and laser in a dye-doped blue phase with a low-concentration azobenzene liquid crystal.” This work demonstrates the feasibility of a novel photosensitive and all-optically fast-controllable PBG device based on a dye-doped blue phase (DDBP), embedded with a low-concentration azobenzene liquid crystal (azo-LC). The PBG of the DDBP can be reversibly fast-tuned off and on with the successive illumination of a weak UV and green beams. The UV irradiation can transform the trans azo-LCs into bend cis isomers, which can easily disturb LCs at the boundary between the double twisting cylinders (DTCs) and the disclinations, and, then, quickly destabilize BPI to become a BPIII-like texture with randomly-oriented DTCs. With the successive illumination of a green beam, the BPI PBG device can be fast-turned on, owing to the fast disappearance of the disturbance of the azo-LCs on the boundary LCs via the green-beam-induced cis→trans back isomerization. The BP PBG device can significantly contribute to efforts to develop a photosensitive and all-optically fast-controlling LC laser.
(3) The topic of the third work is “Spatially tunable photonic bandgap of wide spectral range and lasing emission based on a blue phase wedge cell.” This study demonstrates for the first time a continuously tunable PBG of wide spectral range based on a BP wedge cell. A continuously shifting PBG of the BP wedge cell occurs due to the thickness gradient of the wedge cell at a fixed temperature. The wedge cell provides a gradient of boundary force on the LCs and thus forms a distribution of BP crystal structure with a gradient lattice. Additionally, a spatially tunable lasing emission based on a DDBP wedge cell is also demonstrated. The tunable band of the PBG and lasing emission is about 130 nm and 70 nm, respectively, which tuning spectral ranges are significantly wider than those of CLC and DDCLC wedge cells, respectively. Such a BP device has a significant potential in applications of tunable photonic devices and displays.
論文目次 摘要...I
Abstract....III
Acknowledgement VI
Contents....VIII
List of Figures XI
List of Table XVII
Chapter 1 Introduction 1
Chapter 2 Properties of Liquid Crystals 4
2.1 Liquid Crystal Phases 4
2.2 Classification of Liquid Crystals 4
2.2.1 Lyotropic Liquid Crystals 4
2.2.2 Thermotropic Liquid Crystals 5
2.3 Anisotropy of Liquid Crystals 8
2.3.1 Birefringence of Liquid Crystals 8
2.3.2 Dielectric Anisotropy of Liquid Crystals 10
2.4 Elastic Continuum Theory of Liquid Crystals 11
Chapter 3 Optical Properties of Cholesteric and Blue Phase Liquid Crystals 13
3.1 Introduction to Cholesteric Liquid Crystals 13
3.1.1 Textures of Cholesteric Liquid Crystals 13
3.1.2 Agents Influences on the Pitch 14
3.2 Optical Properties of Cholesteric Liquid Crystals 16
3.2.1 Bragg Reflection 17
3.2.2 Waveguiding Effect 18
3.2.3 Optical Rotation 20
3.3 Introduction to Blue Phase Liquid Crystals 21
3.3.1 Phase Sequence of Blue Phase 21
3.3.2 Double-Twisted Cylinder 21
3.3.3 Cubic Structure of Blue Phase 24
3.4 Optical Properties of Blue Phase Liquid Crystals 25
3.4.1 Bragg Reflection 25
3.4.2 Kossel Diagram 26
3.4.3 Electric-Optics Response in Blue Phase 28
Chapter 4 Lasing in Dye-Doped Cholesteric Liquid Crystals and Dye-Doped Blue Phase 32
4.1 Basic Principles of Laser 32
4.1.1 Interaction of Single-Mode Light with an Atom 32
4.1.2 Population Inversion 34
4.1.3 Optical Feedback 35
4.2 Mechanism of Distributed Feedback Laser 36
4.3 Cholesteric Liquid Crystal Laser 39
4.4 Blue Phase Laser 41
Chapter 5 Effects of Light on Azobenzene Materials Doped Liquid Crystals 42
5.1 Photoisomerization of Azobenzene Materials 42
5.2 Picth Variation of Azobenzene Chiral Doped Liquid Crystals 44
5.3 Isothermal Phase Transition of Azobenezene Doped Liquid Crystals 45
Chapter 6 Sample Preparation and Experimental Setup 48
6.1 Materials 48
6.2 Sample Preparation 50
6.3 Experimental Setup 51
Chapter 7 Optically Tunable/Switchable Omnidirectionally Spherical Microlaser Based on a Dye-Doped Cholesteric Liquid Crystal Microdroplet with an Azo-Chiral Dopant 56
7.1 Introduction 57
7.2 Methods 59
7.3 Results and Discussion 59
7.4 Summary 71
Chapter 8 Photosensitive and All-Optically Fast-Controllable Photonic Bandgap Device and Laser in a Dye-Doped Blue Phase with a Low-Concentration Azobenzene Liquid Crystal 72
8.1 Introduction 72
8.2 Methods 75
8.3 Results and Discussion 76
8.3.1 Optical Characteristics and Structure of DDBP 76
8.3.2 All-Optically Fast-Controllable PBG of DDBP 78
8.3.3 Physical Model for All-Optical Fast-Controllability of DDBP PBG 79
8.3.4 Comparison of DDBP and DDCLC in Terms of Photocontrolling Features 81
8.3.5 All-Optically Fast-Controllable DDBP Laser 84
8.4 Summary 87
Chapter 9 Spatially Tunable Photonic Bandgap of Wide Spectral Range and Lasing Emission Based on a Blue Phase Wedge Cell 88
9.1 Introduction 88
9.2 Methods 91
9.3 Results and Discussion 91
9.4 Summary 106
Chapter 10 Conclusion and Future Works 107
10.1 Conclusion 107
10.2 Future Works 109
References 110
Curriculum Vitae 123
List of Publications 126
參考文獻 1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
3. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton, NJ, 2008).
4. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
5. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
6. J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
7. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
8. H. Altug, D. Englund, and Jelena Vučković, “Ultrafast photonic crystal nanocavity laser,” Nature Phys. 2, 484–488 (2006).
9. A. Rahmani and P. C. Chaumet, Opt. Express 14(13), 6353–6358 (2006).
10. N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110(12), 123601.
11. K. Lee and S. A. Asher, “Photonic Crystal Chemical Sensors:  pH and Ionic Strength,” J. Am. Chem. Soc. 122(39), 9534–9537 (2000).
12. C. Fenz, T. Hirsch, and O. S. Wolfbeis, “Photonic Crystals for Chemical Sensing and Biosensing,” Angew. Chem. Int. Ed. 53(13), 3318–3335 (2014).
13. K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nature Mater. 2, 117–121 (2003).
14. K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460, 367–370 (2009).
15. Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
16. M. Ravnik, G. P. Alexander, J. M. Yeomans, and S. Žumer, “Three-dimensional colloidal crystals in liquid crystalline blue phases,” Proc Natl Acad Sci U S A. 108(13), 5188–5192 (2011).
17. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
18. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
19. P. Etchegoin, “Blue phases of cholesteric liquid crystals as thermotropic photonic crystals,” Phys. Rev. E 62(1), 1435–1437 (2000).
20. W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nature Mater. 1, 111–113 (2002).
21. F. Castles, F. V. Day, S. M. Morris, D-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nature Mater. 11, 599–603 (2012).
22. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, (Oxford University Press, New York, 1993).
23. M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18(26), 26995–27003 (2010).
24. J.-D. Lin, M.-H. Hsieh, G.-J. Wei, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant,” Opt. Express 21(13), 15765–15776 (2013).
25. Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
26. L. Rao, Z. Ge, and S.-T. Wu, “Viewing angle controllable displays with a blue-phase liquid crystal cell,” Opt. Express 18(13), 3143–3148 (2010).
27. Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
28. P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments, (Taylor & Francis, CRC press, Boca Raton, 2005).
29. P. P. Crooker, Chirality in Liquid Crystals, ed. H.-S. Kitzerow and C. Bahr, (Springer-Verlag, New York, 2001), Ch. 7.
30. A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santoade, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8, 4882–4885 (2012).
31. S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M. H. Song, and S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25, 3002–3006 (2013).
32. S. Chandrasekhar, Liquid Crystals, (Oxford University Press, New York, 1992).
33. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, New York, 1999).
34. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, New York, 1997).
35. J.-J. Wu, Y.-S. Wu, F.-C. Chen, and S.-H. Chen, “Formation of phase grating in planar aligned cholesteric liquid crystal film,” Jpn. J. Appl. Phys. 41(11B), L1318–L1320 (2002).
36. W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17, 531 (1970).
37. P. J. Collins and M. Hird, Introduction to Liquid Crystals: Chemistry and Physics, (Taylor & Francis, CRC press, London, 1997).
38. H.-G. Kuball and T. Hofer, Chirality in Liquid Crystals, ed. H.-S. Kitzerow and C. Bahr, (Springer-Verlag, New York, 2001), Ch. 3.
39. H. Kikuchi, “Liquid crystalline blue phases,” Struct. Bond. 128, 99–117 (2008).
40. A. Yoshizawa, “Liquid crystal oligomers exhibiting a blue phase,” Mol. Cryst. Liq. Cryst. 516, 99–106 (2010).
41. S.-Y. Lu and L.-C. Chien, “Electrically switched color with polymer-stabilized blue-phase liquid crystals,” Opt. Lett. 35(4), 562–564 (2010).
42. H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997–1000 (2005).
43. A. Chanishvili, G. Chilaya, G. Petriashvili, and P. J. Collings, “Trans-cis isomerization and the blue phases,” Phys. Rev. E 71(5), 051705 (2005).
44. H.-Y. Liu, C.-T. Wang, C.-Y. Hsu, T.-H. Lin, and J.-H. Liu, “Optically tuneable blue phase photonic band gaps,” Appl. Phys. Lett. 96(12), 121103 (2010).
45. S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, and T. Nagamura, “Laser emission from a polymer-stabilized liquid-crystalline blue phase,” Adv. Mater. 18(1), 48–51 (2006).
46. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
47. T. Isomura, H. Yoshida, A. Fujii, and M. Ozaki, “Laser emission from a photopolymerized cholesteric blue phase II,” Mol. Cryst. Liq. Cryst. 516(1), 197–201 (2010).
48. J. P. Sethna, “Frustration, curvature, and defect lines in metallic glasses and the cholesteric blue phase,” Phys. Rev. B 31(10), 6278–6297 (1985).
49. S. Meiboom, J. P. Sethna, P. W. Anderson, and W. F. Brinkman, “Theory of the blue phase of cholesteric liquid crystals,” Phys. Rev. Lett. 46(18), 1216–1219 (1981).
50. E. Dubois-Violette and B. Pansu, “Frustration and related topology of blue phases,” Mol. Cryst. Liq. Cryst. 165(1), 151–182 (1988).
51. R. J. Miller and H. F. Gleeson, “Lattice parameter measurements from the Kossel diagrams of the cubic liquid crystal blue phases,” J. Phys. II France 6, 909–922 (1996).
52. J.-D. Lin, Y.-M. Lin, T.-S. Mo, and C.-R. Lee, “Photosensitive and all-optically fast-controllable photonic bandgap device and laser in a dye-doped blue phase with a low-concentration azobenzene liquid crystal,” Opt. Express 22(8), 9171–9181 (2014).
53. J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S.-T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
54. G. Heppke, B. Jerome, H.-S. Kiterow, and P. Pieranski, “Electrostriction of the cholesteric blue phase BPI and BPII in mixtures with positive dielectric anisotropy,” J. Phys. France 50, 2991–2998 (1989).
55. H. Yoshida, S. Yabu, H. Tone, Y. Kawata, H. Kikuchi, and M Ozaki, “Secondary electro-optic effect in liquid crystalline cholesteric blue phases,” Opt. Mater. Express 4(5), 960–968 (2014).
56. D. C. O’shea, W. R. Callen, and W. T. Rhodes, Introduction to Lasers and Their Applications (Addison Wesley, Boston, 1977).
57. H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
58. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
59. V. I. Kopp, B. Fang, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
60. V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures” Prog. Quantum Electron. 27, 369–416 (2003).
61. J.-D. Lin, S.-Y. Huang, H.-S. Wang, S.-H. Lin, T.-S. Mo, C.-T. Horng, H.-C. Yeh, L.-J. Chen, H.-L. Lin, and C.-R. Lee, “Spatially tunable photonic bandgap of wide spectral range and lasing emission based on a blue phase wedge cell,” Opt. Express 22(24), 29479–29492 (2014).
62. L.-J. Chen, J.-D. Lin, and C.-R. Lee, “An optically stable and tunable quantum dot nanocrystal-embedded cholesteric liquid crystal composite laser,” J. Mater. Chem. C 2(22), 4388–4394 (2014).
63. Y. Hirshberg, “Reversible formation and eradication of colors by irradiation at low temperatures. A photochemical memory model,” J. Am. Chem. Soc. 78(10), 2304–2312 (1956).
64. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18(9), 9651–9657 (2010).
65. S.-H. Lin, C.-Y. Shyu, J.-H. Liu, P.-C. Yang, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Photoerasable and photorewritable spatially-tunable laser based on a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Opt. Express 18(9), 9496–9503 (2010).
66. J.-H. Liu, P.-C. Yang, Y.-K. Wang, and C.-C. Wang, “Optical behaviour of cholesteric liquid crystal cells with novel photoisomerizable chiral dopants,” Liq. Cryst. 33(3), 237–248 (2006).
67. H. Yu, and T. Ikeda, “Photocontrollable liquid-crystalline actuators,” Adv. Mater. 23, 2149–2180 (2011).
68. S. Tazuke, S. Kurihara, and T. Ikeda, “Amplified image recording in liquid crystal media by means of photochemically triggered phase transition,”Chem. Lett. 16(5), 911–914 (1987).
69. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. 19, 3244–3247 (2007).
70. Datasheet from Merck.
71. A. Muñoz F, P. Palffy-Muhoray, and B. Taheri, “Ultraviolet lasing in cholesteric liquid crystals,” Opt. Lett. 26(11), 804–806 (2001).
72. C.-R. Lee, S.-H. Lin, H.-C. Yeh, T.-D. Ji, K.-L. Lin, T.-S. Mo, C.-T. Kuo, K.-Y. Lo, S.-H. Chang, A. Y. Fuh, and S. Y. Huang, “Color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch,” Opt. Express 17(15), 12910–12921 (2009).
73. A. Muñoz, M. E. McConney, T. Kosa, P. Luchette, L. Sukhomlinova, T. J. White, T. J. Bunning, and B. Taheri, “Continuous wave mirrorless lasing in cholesteric liquid crystals with a pitch gradient across the cell gap,” Opt. Lett. 37(14), 2904–2906 (2012).
74. Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14(3), 1236–1242 (2006).
75. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
76. T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
77. Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23(46), 5498–5501 (2011).
78. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353–5355 (2003).
79. H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystal elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
80. P. V. Shibaev, R. L. Sanford, D. Chiappetta, V. Milner, A. Genack, and A. Bobrovsky, “Light controllable tuning and switching of lasing in chiral liquid crystals,” Opt. Express 13(7), 2358–2363 (2005).
81. G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-emitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
82. D. Brady, G. Papen, and J. E. Sipe, “Spherical distributed dielectric resonators,” J. Opt. Soc. Am. B 10(4), 644–657 (1993).
83. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “InGaAsP annular Bragg lasers: theory, applications and modal properties,” IEEE J. Sel. Top. Quantum Electron. 11(2), 476–484 (2005).
84. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of reflection of choleterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
85. E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and J. D. Joannopoulos, “Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ = 1.55 mum wavelengths,” Opt. Lett. 26(5), 286–288 (2001).
86. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12(8), 1575–1582 (2004).
87. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, “Selfcollimating photonic crystal polarization beam splitter,” Opt. Lett. 32(5), 530–532 (2007).
88. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol. 19(12), 1970–1975 (2001).
89. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
90. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
91. M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009).
92. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33(2), 147–149 (2008).
93. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
94. T. J. White, R. L. Bricker, L. V. Natarajan, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Polymer stabilization of phototunable cholesteric liquid crystals,” Soft Matter 5(19), 3623–3628 (2009).
95. T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
96. H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
97. M.-C. Cheng, C.-C. Chu, Y.-C. Su, W.-T. Chang, V. K. S. Hsiao, K.-T. Yong, W.-C. Law, and P. N. Prasad, “Light-induced photoluminescence switching using liquid crystal-dispersed quantum dots,” IEEE Photonics J. 4(1), 19–25 (2012).
98. C.-R. Lee, J.-D. Lin, Y.-J. Huang, S.-C. Huang, S.-H. Lin, and C.-P. Yu, “All-optically controllable dye-doped liquid crystal infiltrated photonic crystal fiber,” Opt. Express 19(10), 9676–9689 (2011).
99. C.-R. Lee, J.-D. Lin, B.-Y. Huang, T.-S. Mo, and S.-Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express 18(25), 25896–25905 (2010).
100. H.-C. Jeong, K. V. Le, M.-J. Gim, S.-T. Hur, S.-W. Choi, F. Araoka, K. Ishikawa, and H. Takezoe, “Transition between widened blue phases by light irradiation using photo-active bent-core liquid crystal with chiral dopant,” J. Mater. Chem. 22, 4627–4630 (2012).
101. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
102. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
103. M. Loncar, T. Yoshie, A. Scherer, P. Gonga, and Y. Qiu, “Low threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680–2682 (2002).
104. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38–39), 3915–3918 (2009).
105. M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirroless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. 14(4), 306–309 (2002).
106. M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-tunable liquid-crystal laser,” Adv. Mater. 15(12), 974–977 (2003).
107. R. Ozaki and H. Moritake, “Wavelength and bandwidth tunable photonic stopband of ferroelectric liquid crystals,” Opt. Express 20(6), 6191–6196 (2012).
108. G. Heppke, B. Jerome, H.-S. Kitzerow, and P. Pieranski, “Electrostriction of BPI and BPII for blue phase systems with negative dielectric anisotropy,” J. Phys. France 50(5), 549–562 (1989).
109. G. Heppke, B. Jerome, H.-S. Kitzerow, and P. Pieranski, “Electrostriction of the cholesteric blue phases BPI and BPII mixtures with positive dielectric anisotropy,” J. Phys. France 50(19), 2991–2998 (1989).
110. T. H. Lin, Y. Li, C.-T. Wang, H.-C. Jau, C.-W. Chen, C.-C. Li, H. K. Bisoyi, T. J. Bunning, and Q. Li, “Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film,” Adv. Mater. 25(36), 5050–5054 (2013).
111. Y. Huang, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88(1), 011107 (2006).
112. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86(5), 051107 (2005).
113. K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-sensitive cholesteric liquid crystal dye laser covering a full visible range,” Jpn. J. Appl. Phys. 46(36), L874–L876 (2007).
114. S. M. Morris, P. J. W. Hands, S. Findeisen-Tandel, R. H. Cole, T. D. Wilkinson, and H. J. Coles, “Polychromatic liquid crystal laser arrays towards display applications,” Opt. Express 16(23), 18827–18837 (2008).
115. M.-Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 051108 (2008).
116. H.-Y. Liu, C.-T. Wang, C.-Y. Hsu, and T.-H. Lin, “Pinning effect on the photonic bandgaps of blue-phase liquid crystal,” Appl. Opt. 50(11), 1606–1609 (2011).
117. H.-S. Chen, Y.-H. Lin, C.-H. Wu, M. Chen, and H.-K. Hsu, “Hysteresis-free polymer-stabilized blue phase liquid crystals using thermal recycles,” Opt. Mater. Express 2(8), 1149–1155 (2012).
118. M. Chen, Y.-H. Lin, H.-S. Chen, and H.-Y. Chen, “Electrically assisting crystal growth of blue phase liquid crystals,” Opt. Mater. Express 4(5), 953–959 (2014).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-04-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-04-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw