進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1004201217372500
論文名稱(中文) 溶液式製程之高介電常數絕緣層應用於五環素有機薄膜電晶體之研究
論文名稱(英文) High Performance Pentacene-based Thin Film Transistors with Solution-processed High-permittivity Insulators
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 100
學期 2
出版年 101
研究生(中文) 魏嘉余
研究生(英文) Chia-Yu Wei
學號 L78961181
學位類別 博士
語文別 英文
論文頁數 146頁
口試委員 指導教授-王永和
口試委員-洪茂峰
口試委員-張守進
口試委員-許進恭
口試委員-李文熙
口試委員-江德光
口試委員-黃建榮
口試委員-陳英忠
口試委員-李明逵
中文關鍵字 有機薄膜電晶體  五環素  高介電常數  溶液式製程  高載子移動率  馬克思赫許方程式  載子跳躍比  感測器  反相器 
英文關鍵字 Organic thin film transistor  Pentacene  High permittivity  Solution-processed  High field effect mobility  March-Hush equation  Hopping rate  Sensor  Inverter 
學科別分類
中文摘要 過去二十年以來,有機半導體成為一個有意義之研究領域且受到廣泛的重視。相較傳統無機半導體而言,有機半導體中存在著低溫、低成本的製程,可大面積製作及可撓式等優點。其中,五環素有機半導體在室溫下多為多晶相薄膜,與在分子間具有較好之π-π電子重疊排列,使得五環素有機半導體元件成為最受歡迎的有機半導體之相關電子元件。本論文主要致力於將高介電常數絕緣層材料以溶液式製程做出高特性之五環素有機薄膜電晶體與相關電子元件,其中高介電常數材料可略分為氧化鉿、鈦酸鋇、鋯鈦酸鋇以及鋯鎳酸鍶等等。
溶液式製程高介電常數材料具有兩大優勢:第一為具有與有機半導體可相並立之優點,例如低成本的製程,可撓式以及大面積製作等等;第二為其可改善傳統有機薄膜電晶體高操作電壓之缺點。本論文主要之特徵為五環素有機薄膜電晶體操作於飽和區時之載子移動率有出色的表現。有鑑於此,利用諸多驗證去分析與解釋此高飽和載子移動率之現象,例如觀察以溶膠凝膠合成法之絕緣層所具有之平坦表面、表面能、五環素在薄膜上之層島成長晶相模式、或五環素所結晶出之大晶核及小晶粒,以及最重要地,由馬克思赫許方程式所推導與量化之載子跳躍比率。
為了更進一步詳細地證明馬克思赫許方程式,可由五環素為主動層之正醇類化合物感測器對各種條件下產生的載子移動率之變化來證明。因為五環素薄膜會對不同正醇類化合物反應後進而影響分子間耦合能及重組能的改變,而由載子移動率以及載子跳躍比率之高度一致性可得知馬克思赫許方程式是一個被用來解釋有機半導體載子移動理論的適當方法。
最後,以五環素為主動層的增強式負載反相器同時具備了高增益、低功率消耗以及低操作電壓等優點,由此可知本論文中所提到的溶液式製程之各種高介電常數絕緣層是有益且適合於應用有機電子元件中。
英文摘要 Over the past two decades, organic semiconductors have been widely paid attention to a significant investigated area due to several advantages they possessed compared with traditional silicon semiconductors, such as low-cost budget fabrication, low temperature process, large area fabrication, and flexibility mechanism. Furthermore, pentacene-based organic electronic devices became as popularity organic devices due to the superior properties of polycrystalline films at room temperature, and better order π-π overlap between neighboring molecules. Therefore, this research focuses on the development of high performance pentacene-based organic electronic devices with solution-processed high-κ insulators, such as hafnium oxide, barium titanate, barium zirconate titanate, strontium zirconate nickelate, and so on.
The predominance of high-κ solution-processed insulators can be briefly arranged as two points: one is compatible with the advantages of organic semiconductors, such as low cost, flexibility, as well as large-area process; the other is the improvement of high operating voltage phenomenon which the traditional organic thin film transistors (OTFTs) shortcomings presented. The particular characteristic of pentacene-based OTFTs in this research are the phenomenon of high saturated field effect mobility. Several verifications, such as smooth surface morphologies of sol-gel processed insulators, surface energy, S-K mode of pentacene thin film growth mode, “large grain and small crystalline” system, and most importantly, the hopping rate derived from Marcus-Hush equation, are proposal to expound the high saturated field effect mobilities of pentacene-based OTFTs.
To specifically verify the March-Hush equation, the pentacene-based detectors for primary alcohol analytes were also designed to observe the variation of hopping rate under different analytes via intermolecular coupling energy and reorganization energy of pentacene thin film, respectively. Very good agreements between the variation of hopping rate and mobility also indicated that March-Hush equation is a suitable method to determine carrier transport mechanisms in organic semiconductors.
Finally, high gain, low power dissipation, as well as small operating voltage enhancement-load pentacene-based inverters are also investigated. This also indicated that solution-processed high-κ insulators proposal in this dissertation are suitable and benefit for organic electronic devices application.
論文目次 ABSTRACT (Chinese) ………………………………………………………… I
ABSTRACT (English) ………………………………………………………… III
致謝 ……………………………………………………………… V
CONTENTS ………………………………………………………… IX
FIGURE CAPTIONS …………………………………………………………… XIII
TABLE CAPTIONS …………………………………………………………… XVII

CHAPTER 1
Introduction
1.1 Organic Semiconductor……………………………………………… 001
1.2 Organic Thin-film Transistors………………………… 007
1.3 Motivation……………………………………………………… 012
1.4 Organization of Dissertation…………………………… 014
1.5 References……………………………………………………… 018

CHAPTER 2
Pentacene-based Thin Film Transistors with Solution-processed Hafnium Oxide Insulators
2.1 Introduction………………………………………………………021
2.2 Experiment……………………………………………………… 022
2.3 Results and Discussion…………………………………………… 025
2.3.1 Chemical Composition of HfOx……… 025
2.3.2 Electrical Properties of HfOx…… 027
2.3.3 OTFTs Performance…………………………………… 029
2.3.4 Surface Energy…………………………………………… 032
2.3.5 Comparison with Other Works………… 034
2.4 Summary…………………………………………………………………… 034
2.5 References……………………………………………………… 036

CHAPTER 3
Pentacene-based Thin Film Transistors and Inverters with Solution-processed Barium Titanate Insulators
3.1 Introduction…………………………………………………………………… 039
3.2 Experiment……………………………………………………… 040
3.3 Results and Discussion…………………………………………… 045
3.3.1 Pentacene-based OTFTs with BTO Insulators…………………045
3.3.1.1 Chemical Composition of BTO…………………………………………045
3.3.1.2 Physical and Electrical Properties of BTO……………046
3.3.1.3 OTFTs Performance………………………… 053
3.3.1.4 Surface Energy………………………………… 058
3.3.1.5 Growth Mode of Pentacene Thin Film………………061
3.3.1.6 Average Crystalline Size of Pentacene Thin Film……………063
3.3.1.7 Grain Size of Pentacene Thin Film…………………………064
3.3.1.8 Raman Spectra of Pentacene Thin Film………………067
3.3.1.9 “Large Grain and Small Crystalline Size” Model………………067
3.3.2 Pentacene-based Inverters with BTO Insulators………………………072
3.3.2.1 Voltage Transfer Curve…………… 072
3.3.2.2 Power Consumption………………………… 074
3.4 Summary……………………………………………………… 075
3.5 References…………………………………………………………077

CHAPTER 4
Pentacene-based Thin Film Inverters and Sensors with Solution-processed Barium Zirconate Titanate Insulators
4.1 Introduction………………………………………………………… 081
4.2 Experiment……………………………………………………………… 084
4.2.1 Transistors and Inverters………………………… 084
4.2.2 Sensor Experiment……………………………………………… 088
4.3 Results and Discussion……………………………………………………… 090
4.3.1 Pentacene-based OTFTs with BZT Insulators……………………090
4.3.1.1 Physical and Electrical Properties of BZT……………………………090
4.3.1.2 OTFTs Performance………………………… 093
4.3.2 Pentacene-based Inverters with BZT Insulators………………………096
4.3.2.1 Characteristics of Load Transistors……………………………… 096
4.3.2.2 Voltage Transfer Curve…………… 098
4.3.2.3 Basic Definitions of Inverter’s Parameters……………………098
4.3.2.4 Load Line Theorem………………………… 099
4.3.2.5 Power Consumption………………………… 104
4.3.2.6 Comparison with Other Published Works…………………………104
4.3.3 Pentacene-based TFT Gas Sensors with BZT Insulators for Primary Alcohol Analytes……… 104
4.3.3.1 Sensing Response…………………………… 104
4.3.3.2 Intermolecular Coupling Energy……………………………107
4.3.3.3 Reorganization Energy……………… 109
4.3.3.4 March-Hush Equation…………………… 111
4.3.3.5 Hopping Rate of the Pentacene Thin Film under Sensing Experiments of Different Analytes 112
4.4 Summary……………………… 114
4.5 References……………………………………115

CHAPTER 5
Novel Solution-processed Strontium Zirconate Nickelate Insulators Synthesized by Sol-gel Methods Applied in Pentacene-based thin Film Transistors
5.1 Introduction…………………………………………………………119
5.2 Experiment………………………………………………………………120
5.3 Results and Discussion……………………………………………………… 124
5.3.1 The Novel Synthesis of Sol Precursor 124
5.3.2 Physical and Electrical Properties of SZN……………125
5.3.3 OTFTs Performance……………………………………………… 128
5.3.4 Hopping Rate…………………………………………………………… 130
5.4 Summary…………………………………………………132
5.5 References…………………………………………133

CHAPTER 6
Conclusion
6.1 Conclusion………………………………………………………………135
6.2 Future Work……………………………………………………………140

PUBLICATION LIST……………………………………………………… 143
VITA ……………………………………………………………………………… 146
參考文獻 [1-01] I. Kymissis, “Organic field effect transistors: theory, fabrication and characterization,” Springer, p. 6, 7, 21, 2008.
[1-02] K. R. C. Vollhardt, “Organische chemie,” VCH-Verlag, Weinheim, 1990.
[1-03] H. Klauk, “Organic electronics: material, manufacturing and applications,” Wiley-Vch, p. 8, 2006.
[1-04] Z. Bao, and J. Locklin, “Organic field-effect transistors,” CRC Press, p. 162, 164, 2007.
[1-05] C. Goldmann, S. Haas, C. Krellner, K. P. Pernstich, D. J. Gundlach, and B. Batlogg, “Hole mobility in organic single crystals measured by a "flip-crystal" field-effect technique,” J. Appl. Phys., vol. 96, pp. 2080-2086, 2004.
[1-06] T. W. Kelley, L. D. Boardman, T. D. Dunbar, D. V. Muyres, M. J. Pellerite, and T. P. Smith, “High-performance OTFTs using surface-modified alumina dielectrics”, J. Phys. Chem. B, vol. 107, pp. 5877-5881, 2003.
[1-07] T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith, and T. D. Jones, “High performance organic thin film transistors,” Mater. Res. Soc. Symp. Proc., vol. 771, pp. 169-179, 2003.
[1-08] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, “Pentacene-based organic thin-film transistors,” IEEE Trans. Elect., vol. 44, p. 1325, 1997.
[1-09] H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and W. Radlik, “High-mobility polymer gate dielectric pentacene thin film transistors,” J. Appl. Phys., vol. 92, pp. 5259-5263, 2002.
[1-10] D. Knipp, R. A. Street, A. Völkel, and J. Ho, “Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport,” J. Appl. Phys., vol. 93, pp. 347-355, 2003.
[1-11] M. Devynck, P. Tardy, G. Wantz, Y. Nicolas, L. Vellutini, C. Labrugere, and L. Hirsch, “Cumulative effects of electrode and dielectric surface modifications on pentacene-based transistors,” Appl. Phys. Lett., vol. 100, p. 053308, 2012.
[1-12] M. Pope, and C. E. Swenberg, “Electronic processes in organic crystals,” Clarendon Press, Oxford, 1982.
[1-13] P. K. Weimer, “The TFT: a new thin-film transistor,” Proc. IRE, vol. 50, pp. 1462-1469, 1962.
[1-14] F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacety-lene/polysiloxane interface,” J. Appl. Phys., vol. 54, pp. 3255, 1983.
[1-15] A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Fieldeffect transistor with a polythiophene thin film,” Appl. Phys. Lett., vol. 49, p. 1210, 1986.
[1-16] A. R. Brown, A. Pomp, C. M. Hart, and D. M. de Leeuw, “Logic gates made from polymer transistors and their use in ring oscillators,” Science, vol. 270, pp. 972-974, 1995.
[1-17] B. Crone, A. Dodabalapur, A. Gelperin, L. Torsi, H. E. Katz, A. J. Lovinger, and Z. Bao, “Electronic sensing of vapors with organic transistors,” Appl. Phys. Lett., vol. 78, pp. 2229-2231, 2001.
[1-18] P. Lin, and F. Yan, “Organic thin-film transistors for chemical and biological sensor,” Adv. Mater., vol. 24, pp. 34-51, 2012.
[1-19] M. G. Kane, J. Campi, M. S. Hammond, F. P. Cuomo, B. Greening, C. D. Sheraw, J. A. Nichols, D. J. Gundlach, J. R. Huang, C. C. Kuo, L. Jia, H. Klauk, and T. N. Jackson, “Analog and digital circuits using organic thin-film transistors on polyester substrates,” IEEE Electron Device Lett., vol. 21, pp. 534-536, 2000.
[1-20] P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, and S. D. Theiss, “Pentacene-based radio-frequency identification circuitry,” Appl. Phys. Lett., vol. 82, pp. 3964-3966, 2003.
[1-21] A. C. Tickle, “Thin-film transistors: a new approach to microelectronics,” New York: Wiley, 1969.
[1-22] M. S. Shur, “Physics of semiconductor devices,” New jersey: Prentice Hall, 1990.
[1-23] D. W. Greve, “Field effect devices and applications,” New jersey: Prentice Hall, 1998.
[1-24] D. R. Gamota, P. Brazis, K. Kalyanasundaram, and J. Zhang, “Printed organic and molecular electronics,” Kluwer Academic Publishers, pp. 359, 2004.
[1-25] S. M. Sze, “Semiconductor devices: physics and technology,” Wiley, 2002.
[1-26] J. Puigdollersa, C. Voz, A. Orpella, R. Quidant, I. Martin, M. Vetter, and R. Alcubilla, “Pentacene thin-film transistors with polymeric gate dielectric,” Org. Electron., vol. 5, pp. 67-71, 2004.
[1-27] S. W. Liu, C. C. Lee, H. L. Tai, J. M. Wen, J. H. Lee, and C. T. Chen, "In situ electrical characterization of the thickness dependence of organic field-effect transistors with 1-20 molecular monolayer of pentacene," Appl. Mater. Interfaces, vol. 2 , no. 8, pp.2282-2288, 2010.
[1-28] D. E. Janzen, M. W. Burand, P. C. Ewbank, T. M. Pappenfus, H. Higuchi, D. A. Da Silva Filho, V. G. Young, J. Brédas, and K. R. Mann, “Preparation and characterization of pi-stacking quinodimethane oligothiophenes. Predicting semiconductor behavior and bandwidths from crystal structures and molecular orbital calculations,” J. Am. Chem. Soc., vol. 126, pp. 3163-3174, 2004.
[1-29] K. D. Kim, and C. K. Song, “Low voltage pentacene thin film transistors employing a self-grown metal-oxide as a gate dielectric,” Appl. Phys. Lett., vol. 88, p. 233508, 2006.
[1-30] J. Park, J. W. Lee, D. W. Kim, B. J. Park, H. J. Choi, and J. S. Choi, “Pentacene thin-film transistor with poly(methyl methacrylate-co-methacrylic acid)/TiO2 nanocomposite gate insulator,” Thin Solid Films, vol. 518, pp. 588-590, 2009.
[1-31] S. J. Yun, J. B. Koo, J. W. Lim, and S. H. Kim, “Pentacene-thin film transistors with ZrO2 gate dielectric layers deposited by plasma-enhanced atomic layer deposition,” Electrochem. Solid St., vol. 10, pp. H90-H93, 2007.
[1-32] X.-H. Zhang, S. P. Tiwari, S.-J. Kim, and B. Kippelen, “Low-voltage pentacene organic field-effect transistors with high-κ HfO2 gate dielectrics and high stability under bias stress,” Appl. Phys. Lett., vol. 95, p. 223302, 2009.
[1-33] R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys., vol. 97, p. 121301 , 2005.
[1-34] E. Reichmanis, H. Katz, C. Kloc, and A. Maliakal, “Plastic electronic devices: from materials design to device applications,” Bell Labs Tech. J., vol. 10, pp. 87-105, 2005.
[2-01] C. D. Dimitrakopoulos, and P. R. L. Malenfant, “Organic thin film transistors for large area electronics,” Adv. Mater., vol. 14, no. 2, pp. 99-117, 2002.
[2-02] T. N. Jackson, Y. Y. Lin, D. J. Gundlach, and H. Klauk, “Organic thin-film transistors for organic light-emitting flat-panel display backplanes,” IEEE J. Sel. Top. Quant., vol. 4, no. 1, pp. 100-104, 1998.
[2-03] Y. Zhao, G. Dong, L. Wang, and Y. Qiu, “Improved photostability of organic thin film transistors with tantalum oxide-poly(4-vinylphenol) double gate insulators,” Appl. Phys. Lett., vol. 90, no. 25, p. 252110, 2007.
[2-04] K. Choi, D. K. Hwang, K. Lee, J. H. Kim, and S. Im, “Pentacene thin-film transistors with polymer/TiOx double-layer dielectrics operating at 3 V,” Electrochem. Solid-State Lett., vol. 10, no. 3, pp. H114-H116, 2007.
[2-05] S. S. Cheng, C. Y. Yang, C. W. Ou, Y. C. Chuang, M. C. Wu, and C. W. Chu, “Pentacene thin-film transistor with PVP-capped high-k MgO dielectric grown by reactive evaporation,” Electrochem. Solid-State Lett., vol. 11, no. 5, pp. H118-H120, 2008.
[2-06] P. T. Liu, Y. M. Chou, and P. Y. Yang, “Dielectric hafnium oxide improved by supercritical carbon dioxide fluid treatment for pentacene thin-film transistors,” Electrochem. Solid-State Lett., vol. 11, no. 7, pp. H165-H168, 2008.
[2-07] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl, Phys., vol. 89, no.10, pp. 5243-5275, 2001.
[2-08] F. C. Chen, C. W. Chu, J. He, Y. Yang, and J. L. Lin, “Organic thin-film transistors with nanocomposite dielectric gate insulator,” Appl. Phys. Lett., vol. 85, no. 15, pp. 3295-3297, 2004.
[2-09] P. D. Kirsch, C. S. Kang, J. Lozano, J. C. Lee, and J. G. Ekerdt, “Electrical and spectroscopic comparison of HfO2/Si interfaces on nitrided and un-nitrided Si(100),” J. Appl. Phys., vol. 91, no. 7, pp. 4353-4363, 2002.
[2-10] T. L. Barr, “ESCA studies of naturally passivated metal foils,” J. Vac. Sci. Technol., vol. 14, no.1, pp. 660-665, 1977.
[2-11] Daniel R. Gamota, Paul Brazis, Krishna Kalyanasundaram, and Jie Zhang, “Printed organic and molecular electronics.” Kluwer Academic Publishers, chapter 4, pp.364-365, 2004.
[2-12] Y. J. Lin, Y. C. Li, C. C. Yeh, S. F. Chung, L. M. Huang, T. C. Wen, and Y. H. Wang, “Organic thin film transistor by using polymer electrolyte to modulate the co1nductivity of conjugated polymer,” Appl. Phys. Lett., vol. 89, no. 22, p. 223518, 2006.
[2-13] P. Kim, X. H. Zhang, B. Domercq, S. C. Jones, P. J. Hotchkiss, S. R. Marder, B. Kippelen, and J. W. Perry, “Solution-processible high-permittivity nanocomposite gate insulators for organic field-effect transistors,” Appl. Phys. Lett., vol. 93, no. 1, p. 013302, 2008.
[2-14] D. K. Owens, and R. C. Wendt, “Estimation of the surface free energy of polymers,” J. Appl. Polym. Sci., vol. 13, pp.1741-1747, 1969.
[2-15] L. F. Drummy, and D. C. Martin, “Thickness-driven orthorhombic to triclinic phase transformation in pentacene thin films,” Adv. Mater., vol. 17, no. 7, pp. 903-907, 2005.
[2-16] S. Y. Yang, K. Shin, and C. E. Park, “The effect of gate-dielectric surface energy on pentacene morphology and organic field-effect transistor characteristics,” Adv. Funct. Mater., vol. 15, pp. 1806-1814, 2005.
[2-17] W. Y. Chou, C. W. Kuo, H. L. Cheng, Y. R. Chen, F. C. Tang, F. Y. Yang, D. Y. Shu, and C. C. Liao, “Effect of surface free energy in gate dielectric in pentacene thin-film transistors,” Appl. Phys. Lett., vol. 89, no. 11, p. 112126, 2006.
[3-01] M. Liao, H. Ishiwara, and S. I. Ohmi, “Room-temperature-fabricated low-voltage operating pentacene-based organic field-effect transistors with HfON gate insulator,” IEEE Electron Device Lett., vol. 32, no. 11, pp. 1600-1602, 2011.
[3-02] J. Park, B. J. Park, H. J. Choi, Y. Kim, and J. S. Choi, “Pentacene TFT with reduced threshold voltage using PMMA-co-MAA/Sol-Gel-Derived TiO2 composite insulator,” IEEE Electron Device Lett., vol. 30, pp. 1146-1148, 2009.
[3-03] P. Kim, X. H. Zhang, B. Domercq, S. C. Jones, P. J. Hotchkiss, S. R. Marder, B. Kippelen, and J. W. Perry, “Solution-processable high-permittivity nanocomposite gate insulators for organic field-effect transistors,” Appl. Phys. Lett., vol. 93, no. 1, p. 013302, 2008.
[3-04] Y. Jang, W. H. Lee, Y. D. Park, D. Kwak, J. H. Cho, and K. Cho, “High field-effect mobility pentacene thin-film transistors with nanoparticle polymer composite/poly bilayer insulators,” Appl. Phys. Lett., vol. 94, no. 18, p. 183301, 2009.
[3-05] C. Hagendorf, K.-M. Schindler, T. Doege, and H. Neddermeyer, “A scanning tunneling microscopy, X-ray photoelectron spectroscopy and low energy electron diffraction investigation of the BaTiO3(111) surface,” Surf. Sci., vol. 436, pp. 121-130, 1999.
[3-06] X. Du, Y. Xu, H. Ma, J. Wang, and X. Li, “Synthesis and characterization of bismuth titanate by an aqueous sol–gel method,” J. Am. Ceram. Soc., vol. 90, pp.1382-1385, 2007.
[3-07] S. M. Mukhopadhyay, and T. C. S. Chen, “Surface chemical states of barium titanate: Influence of sample processing,” J. Mater. Res., vol. 10, no. 6, pp. 1502-1507, 1995.
[3-08] S. A. Nasser, “X-ray photoelectron spectroscopy study on the composition and structure of BaTiO3 thin films deposited on silicon,” Appl. Surf. Sci., vol. 157, pp. 14-22, 1999.
[3-09] B. Demri, M. Hage-Ali, M. Moritz, J. L. Kahn, and D. Muster, “X-ray photoemission study of the calcium/titanium dioxide interface,” Appl. Surf. Sci., vol. 108, pp. 245-249, 1996.
[3-10] S. Hong, A. Amassian, A. R. Woll, S. Bhargava, J. D. Ferguson, G. G. Malliaras, J. D. Brock, and J. R. Engstrom, “Real time monitoring of pentacene growth on SiO2 from a supersonic source,” Appl. Phys. Lett., vol. 92, p. 253304, 2008.
[3-11] J. H. Park, S. W. Cho, S. H. Park, J. G. Jeong, H. J. Kim, Y. Yi, and M.-H. Cho, “The effect of copper hexadecafluorophthalocyanine (F16CuPc) inter-layer on pentacene thin-film transistors,” Synthetic Met., vol. 160, p. 108, 2009.
[3-12] J. Li, X.-W. Zhang, L. Zhang, K.-ul-Haq, X.-Y. Jiang, W.-Q. Zhu, and Z.-L. Zhang, “Improving organic transistor performance through contact-area-limited doping, ” Solid State Commun., vol. 149, p. 1826, 2009.
[3-13] W. C. Y. Ma, T. Y. Chiang, J. W. Lin, and T. S. Chao, “Oxide thinning and structure scaling down effect of low-temperature poly-Si thin-film transistors,” J. Disp. Technal., vol. 8, no. 1, pp.12-17, 2012.
[3-14] Q. J. Cai, Y. Gan, M. B. C. Park, H. B. Yang, Z. S. Lu, C. M. Li, J. Guo, and Z. L. Dong, “Solution-processable barium titanate and strontium titanate nanoparticle dielectric for low-voltage organic thin film transistors,” Chem. Mater., vol. 21, no. 14, pp. 3153-3161, 2009.
[3-15] L. F. Drummy, and D. C. Martin, “Thickness-driven orthorhombic to triclinic phase transformation in pentacene thin films,” Adv. Mater., vol. 17, no. 7, pp. 903-907, 2005.
[3-16] M. Yoshida, S. Uemura, T. Kodzasa, T. Kamata, M. Matsuzawa, and T. Kawai, “Surface potential control of an insulator layer for the high performance organic FET,” Synthetic Met., vol. 137, pp. 967-968, 2003.
[3-17] S.-Y. Kwak, Chaun. G. Choi and B.-S. Bae, “Effect of surface energy on pentacene growth and characteristics of organic thin-film transistors,” Electrochem. Solid-State Lett., vol. 12, pp. G37-G39, 2009.
[3-18] R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K.-C. Chang, A. C. Mayer, P. Clancy, J. M. Blakely, R. L. Headrick, S. Iannotta, and G. G. Malliaras, “Pentacene thin film growth,” Chem. Mater., vol. 16, pp. 4497-4508, 2004.
[3-19] H.-L. Cheng, W.-Y. Chou, C.-W. Kuo, Y.-W. Wnag, Y.-S. Mai, F.-C. Tang, and S.-W. Chu, “Influence of electric field on microstructures of pentacene thin films in field-effect transistors,” Adv. Funct. Mater., vol. 18, pp. 285-293, 2008.
[3-20] Q. Qi, A. Yu, P. Jiang, and C. Jiang, “Enhancement of carrier mobility in pentacene thin-film transistor on SiO2 by controlling the initial film growth modes,” Appl. Surf. Sci., vol. 255, pp. 5096-5099, 2008.
[3-21] L. E. Alexander, “X-ray diffraction methods in polymer science,” Wiley-Interscience, New York, p. 423, 1969.
[3-22] D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom, “Pentacene organic thin-film transistors-molecular ordering and mobility,” IEEE Electron. Device Lett., vol. 18, no. 3, p. 87, 1997.
[3-23] T. Cahyadi, J. Kasim, H. S. Tan, S. R. Kulkarni, B. S. Ong, Y. Wu, Z.K. Chen, C. M. Ng, Z.X. Shen, and S. G. Mhaisalkar, “Enhancement of carrier mobilities of organic semiconductors on sol–gel dielectrics: investigations of molecular organization and interfacial chemistry effects,” Adv. Funct. Mater., vol. 19, no.3, pp. 378-385, 2009.
[3-24] K. Tsukagoshi, I. Yagi, and Y. Aoyagi, “Nano-scale interface controls for future plastic transistors,” Sci. Technol. Adv. Mat., vol. 7, no. 3, pp. 231-236, 2006.
[3-25] S. H. Wen, A. Li, J. Song, W.Q. Deng, K.L. Han, and W. A. Goddard III, “First-principles investigation of anisotropic hole mobilities in organic semiconductors,” J. Phys. Chem. B, vol. 113, no. 26, pp. 8813-8819, 2009.
[3-26] Z. Bao, and J. Locklin, “Organic field-effect transistors,” CRC Press, Boca Raton, p. 85, 2007.
[3-27] J. R. Ares, A. Pascual, I. J. Ferrer, and C. Sanchez, “Grain and crystallite size in polycrystalline pyrite thin films,” Thin Solid Films, vol. 480, no. 1, pp. 477-481, 2005.
[3-28] A. S. Sedra, and K. C. Smith, “Microelectronic circuits,” Oxford University, New York, p. 974, 43, 2004.
[3-29] D. A. Neamen, “Microelectronics circuit analysis and design,” McGraw-Hill Education, New York, p. 1149, 2007.
[3-30] J. M. Ball, P. H. Wobkenberg, F. B. Kooistra, J. C. Hummelen, D. M. De Leeuw, D. D.C. Bradley, and T. D. Anthopoulous, “Complementary circuits based on solution processed low-voltage organic field-effect transistors,” Synthetic Mel., vol. 159, p. 2368, 2009.
[3-31] I. M. Graz, and S. P. Lacour, “Flexible pentacene organic thin film transistor circuits fabricated directly onto elastic silicone membranes,” Appl. Phys. Lett., vol. 95, no. 24, p. 243305, 2009.
[3-32] H. Cho, S. Kem, Y. Hong, and C. Lee, “Characteristics of inverters using pentacene organic thin film transistors with printed Ag electrodes,” Mol. Cryst. Liq. Cryst., vol. 513, pp. 262-267, 2009.
[3-33] H. Cho, S. Kim, Y. Hong, and C. Lee, “Characteristics of inverters using pentacene organic thin film transistors with printed Ag electrodes molecular crystals and liquid crystals,” Mol. Cryst. Liq. Cryst., vol. 513, pp. 262-267, 2009.
[4-01] S. K. Rout, T. Badapanda, and S. Panigrahi, “Dielectric study of spin coated nano-thick BaZrxTi1-xO3 film,” Indian J. Pure Appl. Phys., vol. 45, pp. 749-753, 2007.
[4-02] L. Wang, D. Fine, and A. Dodabalapur, “Nanoscale chemical sensor based on organic thin-film transistors,” Appl. Phys. Lett., vol. 85, pp. 6386-6388, 2004.
[4-03] R. A. Bissell, K. C. Persaund, and P. Travers, “The influence of non-specific molecular partitioning of analytes on the electrical responses of conducting organic polymer gas sensors,” Phys. Chem. Chem. Phys., vol. 4, no. 14, pp. 3482-3490, 2002.
[4-04] T. Cahyadi, J. N. Tey, S. G. Mhaisalkar, F. Boey, V. R. Rao, R. Lal, Z. H. Huang, G. J. Qi, Z.-K. Chen, and C. M. Ng, “Investigations of enhanced device characteristics in pentacene-based field effect transistors with sol-gel interfacial layer,” Appl. Phys. Lett., vol. 90, no. 12, p. 122112, 2007.
[4-05] J. Takeya, T. Nishikawa, T. Takenobu, S. Kobayashi, Y. Iwasa, T. Mitani, C. Goldmann, C. Krellner, and B. Batlogg, “Effects of polarized organosilane self-assembled monolayers on organic single-crystal field-effect transistors,” Appl. Phys. Lett., vol. 85, no. 21, pp. 5078-5080, 2004.
[4-06] J. Robertson, “High dielectric constant oxides,” Eur. Phys. J. Appl. Phys., vol. 28, pp. 265-291, 2004.
[4-07] D. A. Neamen, “Microelectronics circuit analysis and design,” McGraw-Hill Education, New York, pp. 1143-1150, 2007.
[4-08] A. S. Sedra, and K. C. Smith, “Microelectronic circuits,” Oxford University, New York, p. 974, 43, 2004.
[4-09] S. C. Lim, S. H. Kim, G. H. Kim, J. B. Koo, Y. S. Yang, J. H. Lee, C. H. Ku, and Y.-H. Song, “High-gain and low hysteresis properties of organic inverters with an UV-photo patternable gate dielectrics,” Thin Solid Film, vol. 516, pp. 4330-4333, 2007.
[4-10] I. M. Graz, and S. P. Lacour, “Flexible pentacene organic thin film transistor circuits fabricated directly onto elastic silicone membranes,” Appl. Phys. Lett., vol. 95, no. 24, p. 243305, 2009.
[4-11] H. Cho, S. Kem, Y. Hong, and C. Lee, “Characteristics of inverters using pentacene organic thin film transistors with printed Ag electrodes,” Mol. Cryst. Liq. Cryst., vol. 513, pp. 262-267, 2009.
[4-12] Y. S. Yang, H. Y. Chu, S. H. Kim, S. C. Lim, J. B. Koo, J. H. Lee, C. H. Ku, J.-I. Lee, L.-M. Do, C. S. Hwang, S.-H. K. Park, G. H. Kim, and S. M. Jung, “Electric characteristics of organic thin-film transistors and logic circuits with a ferroelectric gate insulator,” Thin Solid Film, vol. 515, pp. 7688-7691, 2007.
[4-13] B. Mukherjee, T. J. Shin, K. Sim, M. Mukherjee, J. Lee, S. H. Kim, and S. Pyo, “Periodic arrays of organic crystals on polymer gate insulator for low-voltage field-effect transistors and complementary inverter,” J. Mater. Chem., vol. 20, pp. 9047-9051, 2010.
[4-14] H. L. Cheng, W. Y. Chou, C. W. Kuo, Y. W. Wang, Y. S. Mai, F. C. Tang, and S. W. Chu, “Influence of electric field on microstructures of pentacene thin films in field-effect transistors,” Adv. Funct. Mater., vol. 18, pp.285-293, 2008.
[4-15] H. L. Cheng, X. W. Liang, W. Y. Chou, Y. S. Mai, C. Y. Yang, L. R. Chang, and F. C. Tang, “Raman spectroscopy applied to reveal polycrystalline grain structures and carrier transport properties of organic semiconductor films: Application to pentacene-based organic transistors,” Org. Electron., vol. 10, pp. 289-298, 2009.
[4-16] V. Coropceanu, M. Malagoli, D. A. da Silva Filho, N. E. Gruhn, T. G. Bill, and J. L. Bredas, “Hole- and electron-vibrational couplings in oligoacene crystals: intramolecular contributions,” Phys. Rev. Lett., vol. 89, p.275503, 2002.
[4-17] H. Yamane, S. Nagamatsu, H. Fukagawa, S. Kera, R. Friedlein, K. K. Okudaira, and N. Ueno, “Hole-vibration coupling of the highest occupied state in pentacene thin films,” Phys. Rev. B, vol. 72, p.153412, 2005.
[4-18] S. Guha, J. D. Rice, Y. T. Yau, C. M. Martin, M. Chandrasekhar, H. R. Chandrasekhar, R. Guentner, P. S. de Freitas, and U. Scherf, “Temperature-dependent photoluminescence of organic semiconductors with varying backbone conformation,” Phys. Rev. B, vol. 67, p.125204, 2003.
[4-19] H. Bassler, and B. Schweitzer, “Site-selective fluorescence spectroscopy of conjugated polymers and oligomers,” Acc. Chem. Res., vol. 32, pp.173-182, 1999.
[4-20] S. H. Wen, A. Li, J. Song, W. Q. Deng, K. L. Han, and W. A. Goddard III, “First-principles investigation of anistropic hole mobilities in organic semiconductors,” J. Phys. Chem. B, vol. 113, pp.8813-8819, 2009.
[4-21] Z. Bao, and J. Locklin, “Organic field-effect transistors,” CRC Press, Boca Raton , 2007.
[5-01] S. P. Mukherjee, “Sol-gel processes in glass science and technology,” J. Non-Cryst. Solids, vol. 42, no. 1-3, pp. 477–488, 1980.
[5-02] H. Dislich, and P. Hinz, “History and principles of the sol-gel process, and some new multicomponent oxide coatings,” J. Non-Cryst. Solids, vol. 48, no. 1, pp. 11-16, 1982.
[5-03] D. E. Partlow, and B. E. Yoldas, “Colloidal versus polymer gels and monolithic transformation in glass-forming systems,” J. Non-Cryst. Solids, vol. 46, no. 2, pp. 153-161, 1981.
[5-04] J. A. Lewis, E. B. Duoss, and M. Twardowski, “Sol-gel inks,” United States Patent, no. 0245266 A1, 2008.
[5-05] C. Y. Wei, S. H. Kuo, Y. M. Hung, W. C. Huang, F. Adriyanto, and Y. H. Wang, “High-mobility pentacene-based thin-film transistors with a solution-processed barium titanate insulators,” IEEE Electron Device Letters, vol. 32, no. 1, pp. 90-92, 2011.
[5-06] A. Gerlach, S. Sellner, S. Kowarik, and F. Schreiber, “In-situ X-ray scattering studies of OFET interfaces,” Phys. Stat. Sol. A, vol. 205, no. 3, pp.461-474, 2008.
[5-07] Q. Ji, R. Iwaura, M. Kogiso, J. H. Jung, K. Yoshida, and T. Shimizu, “Direct sol-gel replication without catalyst in an aqueous gel system: From a lipid nanotube with a single bilayer wall to a uniform silica hollow cylinder with an ultrathin wall,” Chem. Mater., vol. 16, pp. 250-254, 2004.
[5-08] H. L. Cheng, X. W. Liang, W. Y. Chou , Y. S. Mai, C. Y. Yang, L. R. Chang, and F. C. Tang, “Raman spectroscopy applied to reveal polycrystalline grain structures and carrier transport properties of organic semiconductor films: application to pentacene-based organic transistors,” Org. Electron., vol. 10, no. 2, pp. 289–298, 2009.
[5-09] H. L. Cheng, W. Y. Chou, C. W. Kuo, Y. W. Wang, Y. S. Mai, F. C. Tang, and S. W. Chu, “Influence of electric field on microstructures of pentacene thin-films in field-effect transistors,” Adv. Funct. Mater., vol. 18, no. 2, pp. 285-293, 2008.
[5-10] S. H. Wen, A. Li, J. Song, W. Q. Deng, K. L. Han, and W. A. Goddard III, “First-principles investigation of anisotropichole mobilities in organic semiconductors,” J. Phys. Chem. B, vol. 113, no. 26, pp. 8813-8819, 2009.
[5-11] G. Horowitz, “Organic field-effect transistors,” Adv. Mater., vol. 10, no. 5, pp. 365-377, 1998.
[5-12] S. Guha, J. D. Rice, Y. T. Yau, C. M. Martin, M. Chandrasekhar, H. R. Chandrasekhar, R. Guentner, P. S. de Freitas, and U. Scherf, “Temperature-dependent Photoluminescence of Organic Semiconductors with Varying Backbone Conformation,” Phys. Rev. B, vol. 67, no. 12, pp. 125204-7, 2003.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-04-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw