系統識別號 U0026-1003202021563500
論文名稱(中文) Alpha節律神經回饋訓練對年輕人及年長者記憶力表現提升之效果分析
論文名稱(英文) Neurofeedback Training of Alpha Activity Improves Memory Performance in Young and Elder Adults
校院名稱 成功大學
系所名稱(中) 心理學系
系所名稱(英) Department of Psychology
學年度 107
學期 1
出版年 107
研究生(中文) 李想
研究生(英文) Xiang Li
學號 U76043016
學位類別 碩士
語文別 英文
論文頁數 32頁
口試委員 指導教授-蕭富仁
中文關鍵字 神經回饋訓練  記憶  alpha活性  輕微認知障礙 
英文關鍵字 neurofeedback training  memory  alpha activity  mid cognitive impairment 
中文摘要 記憶在人類日常生活中,扮演重要的角色,因此如何有效地增進記憶力,無疑是項極具吸引力且值得被深究的議題。而有關記憶能力增進之訓練,alpha節律神經回饋訓練在近幾十年來已廣泛地被探討與應用。本實驗室進行的alpha節律神經回饋訓練,在正常年輕人與失眠族群之中,已經有大量成功案例,初步證實訓練結果可幫助受試者改善工作記憶與睡眠品質。
英文摘要 Memory plays an important role in daily life. How to improve memory is a critical issue in past decades, and several methods have been raised to improve memory. Previous studies have indicated that young people with successful neurofeedback training (NFT) of alpha activity have great improvement on memory performance. However, studies of older age groups have generally shown that a lack of successful alpha NFT for the improvement in working memory among ageing people.
By applying alpha NFT to three groups, the young group, elderly group, and the group of amnestic mild cognitive impairment, the goal of the present research is to examine whether the participants can control their alpha amplitude successfully through alpha NFT, and the effect of alpha NFT training on cognitive performance. The present study assessed working memory by the 2-back task, word pair task and picture recognition task.
In the present experience, some participants via NFT exhibited an increase of alpha activity in relative alpha amplitude and total alpha duration. These participants who increased alpha amplitude in NFT had improved memory performance in three tasks. The result suggested neurofeedback favored better performance in working memory. In addition, participants gave better memory performance after successful training, and this performance also had a positive correlation with alpha amplitude.
論文目次 Contents
中文摘要 I
Abstract II
誌謝 III
Contents IV
List of Tables VI
List of Figures VII
1. Introduction 1
1.1 Memory 1
1.2 Amnestic mild cognitive impairment 1
1.3 Neurofeedback training 3
1.4 Neurofeedback training in different ages 5
1.5 Motivation and hypothesis 6
2. Experiment 8
2.1 Participants 8
2.2 NFT and process 8
2.3 Relative alpha amplitude 9
2.4 Memory tasks 9
2.5 Questionnaire 12
2.6 Experimental design 14
2.7 Statistical analysis 15
3. Results 16
3.1 EEG results 16
3.2 Memory tasks results 18
3.3 Analysis of Responder 19
4. Discussion 24
5. Future works 27
6. Reference 28
參考文獻 Aalseth, C. E., Barbeau, P., Cerdeño, D. G., Colaresi, J., Collar, J. I., De Lurgio, P., . . . Hossbach, T. W. (2008). Experimental constraints on a dark matter origin for the DAMA annual modulation effect. Physical review letters, 101(25), 251301.
Angelakis, E., Stathopoulou, S., Frymiare, J. L., Green, D. L., Lubar, J. F., & Kounios, J. (2007). EEG neurofeedback: a brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly. The clinical neuropsychologist, 21(1), 110-129.
Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes.
Bai, F., Zhang, Z., Watson, D. R., Yu, H., Shi, Y., Yuan, Y., . . . Qian, Y. (2009). Abnormal functional connectivity of hippocampus during episodic memory retrieval processing network in amnestic mild cognitive impairment. Biological psychiatry, 65(11), 951-958.
Beck, A. T., Steer, R. A., & Brown, G. K. J. S. A. (1996). Beck depression inventory-II. 78(2), 490-498.
Berger, H. (1929). On the EEG in humans. Arch. Psychiatr. Nervenkr, 87, 527-570.
Bosch, B., Arenaza-Urquijo, E. M., Rami, L., Sala-Llonch, R., Junqué, C., Solé-Padullés, C., . . . Bartrés-Faz, D. (2012). Multiple DTI index analysis in normal aging, amnestic MCI and AD. Relationship with neuropsychological performance. Neurobiology of aging, 33(1), 61-74.
Bozoki, A., Giordani, B., Heidebrink, J. L., Berent, S., & Foster, N. L. (2001). Mild cognitive impairments predict dementia in nondemented elderly patients with memory loss. Archives of neurology, 58(3), 411-416.
Cho, M. K., Jang, H. S., Jeong, S.-H., Jang, I.-S., Choi, B.-J., & Lee, M.-G. T. (2008). Alpha neurofeedback improves the maintaining ability of alpha activity. Neuroreport, 19(3), 315-317.
Cortoos, A., Verstraeten, E., & Cluydts, R. (2006). Neurophysiological aspects of primary insomnia: implications for its treatment. Sleep medicine reviews, 10(4), 255-266.
Cowan, N., Elliott, E. M., Saults, J. S., Morey, C. C., Mattox, S., Hismjatullina, A., & Conway, A. R. (2005). On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. Cognitive psychology, 51(1), 42-100.
Cowan, N., & Morey, C. C. (2006). Visual working memory depends on attentional filtering. Trends in cognitive sciences, 10(4), 139-141.
Duffy, F. H., Albert, M. S., McAnulty, G., & Garvey, A. J. (1984). Age‐related differences in brain electrical activity of healthy subjects. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 16(4), 430-438.
Escolano, C., Aguilar, M., & Minguez, J. (2011). EEG-based upper alpha neurofeedback training improves working memory performance. Paper presented at the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
Folstein, M. F., Folstein, S. E., McHugh, P., & Fanjiang, G. (2010). Mini-mental state examination: MMSE-2: Psychological Assessment Resources Lutz, FL.
Fydrich, T., Dowdall, D., & Chambless, D. L. J. J. o. a. d. (1992). Reliability and validity of the Beck Anxiety Inventory. 6(1), 55-61.
Gloor, P. (1969). Hans Berger and the discovery of the electroencephalogram. Electroencephalography and clinical neurophysiology, Suppl 28: 21.
Grady, C. L., & Craik, F. I. (2000). Changes in memory processing with age. Current opinion in neurobiology, 10(2), 224-231.
Gruzelier, J. H. (2014). EEG-neurofeedback for optimising performance. I: a review of cognitive and affective outcome in healthy participants. Neuroscience & Biobehavioral Reviews, 44, 124-141.
Guarch, J., Marcos, T., Salamero, M., & Blesa, R. (2004). Neuropsychological markers of dementia in patients with memory complaints. International Journal of Geriatric Psychiatry, 19(4), 352-358.
Hallford, D. J., & Mellor, D. (2016). Brief reminiscence activities improve state well-being and self-concept in young adults: a randomised controlled experiment. Memory, 24(10), 1311-1320.
Hanslmayr, S., Sauseng, P., Doppelmayr, M., Schabus, M., & Klimesch, W. (2005). Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Applied psychophysiology and biofeedback, 30(1), 1-10.
Hardt, J. V., & Kamiya, J. (1978). Anxiety change through electroencephalographic alpha feedback seen only in high anxiety subjects. Science, 201(4350), 79-81.
Hoedlmoser, K., Pecherstorfer, T., Gruber, G., Anderer, P., Doppelmayr, M., Klimesch, W., & Schabus, M. (2008). Instrumental conditioning of human sensorimotor rhythm (12-15 Hz) and its impact on sleep as well as declarative learning. Sleep, 31(10), 1401-1408.
Hsueh, J.-J., Chen, J.-J. J., & Shaw, F.-Z. (2016). Distinct somatic discrimination reflected by laser-evoked potentials using scalp EEG leads. Journal of medical and biological engineering, 36(4), 460-469.
Huster, R. J., Mokom, Z. N., Enriquez-Geppert, S., & Herrmann, C. S. (2014). Brain–computer interfaces for EEG neurofeedback: Peculiarities and solutions. International Journal of Psychophysiology, 91(1), 36-45.
Irish, M., Lawlor, B. A., O’MARA, S. M., & Coen, R. F. (2010). Exploring the recollective experience during autobiographical memory retrieval in amnestic mild cognitive impairment. Journal of the International Neuropsychological Society, 16(3), 546-555.
Jarosz, A. F., Colflesh, G. J., & Wiley, J. (2012). Uncorking the muse: Alcohol intoxication facilitates creative problem solving. Consciousness and Cognition, 21(1), 487-493.
Jelic, V., Johansson, S., Almkvist, O., Shigeta, M., Julin, P., Nordberg, A., . . . Wahlund, L. (2000). Quantitative electroencephalography in mild cognitive impairment: longitudinal changes and possible prediction of Alzheimer’s disease. Neurobiology of aging, 21(4), 533-540.
Kalaria, R., Maestre, G., Arizaga, R., Friedland, R., Galasko, D., Hall, K., . . . Potocnik, F. (2008). World Federation of Neurology Dementia Research Group: Alzheimer’s disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet Neurol, 7(9), 812-826.
Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic bulletin & review, 9(4), 637-671.
Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain research reviews, 29(2-3), 169-195.
Klimesch, W., Doppelmayr, M., & Hanslmayr, S. (2006). Upper alpha ERD and absolute power: their meaning for memory performance. Progress in brain research, 159, 151-165.
Lecomte, G., & Juhel, J. (2011). The effects of neurofeedback training on memory performance in elderly subjects. Psychology, 2(08), 846.
Lin, K.-N., Wang, P.-N., Liu, H.-C., & Teng, E. L. J. A. N. T. (2012). Cognitive abilities screening instrument, Chinese version 2.0 (CASI C-2.0): administration and clinical application. 21(4), 180-189.
Loftus, G. R., & Kallman, H. J. (1979). Encoding and use of detail information in picture recognition. Journal of Experimental Psychology: Human Learning and Memory, 5(3), 197.
McKeith, I., Dickson, D. W., Lowe, J., Emre, M., O'brien, J., Feldman, H., . . . Perry, E. (2005). Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology, 65(12), 1863-1872.
McNay, E. C., & Willingham, D. B. (1998). Deficit in learning of a motor skill requiring strategy, but not of perceptuomotor recalibration, with aging. Learning & Memory, 4(5), 411-420.
Mitchell, A. J., & Shiri‐Feshki, M. (2009). Rate of progression of mild cognitive impairment to dementia–meta‐analysis of 41 robust inception cohort studies. Acta Psychiatrica Scandinavica, 119(4), 252-265.
Miyake, A., & Shah, P. (1999). Models of working memory: Mechanisms of active maintenance and executive control: Cambridge University Press.
Nan, W., Rodrigues, J. P., Ma, J., Qu, X., Wan, F., Mak, P.-I., . . . Rosa, A. (2012). Individual alpha neurofeedback training effect on short term memory. International Journal of Psychophysiology, 86(1), 83-87.
Nordlund, A., Rolstad, S., Klang, O., Lind, K., Pedersen, M., Blennow, K., . . . Wallin, A. (2008). Episodic memory and speed/attention deficits are associated with Alzheimer-typical CSF abnormalities in MCI. Journal of the International Neuropsychological Society, 14(4), 582-590.
Olson, C. R., & Mello, C. V. (2010). Significance of vitamin A to brain function, behavior and learning. Molecular nutrition & food research, 54(4), 489-495.
Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. J. H. b. m. (2005). N‐back working memory paradigm: A meta‐analysis of normative functional neuroimaging studies. 25(1), 46-59.
Park, D. C., Puglisi, J. T., Smith, A. D., & Dudley, W. N. J. J. o. G. (1987). Cue utilization and encoding specificity in picture recognition by older adults. 42(4), 423-425.
Paz, C. d., Kouzak, V., Garcia, A., Neto, A. C. d. P., & Tomaz, C. (2018). SMR Neurofeedback Training Facilitates Working Memory Performance in Healthy Older Adults: A Behavioral and EEG Study. Frontiers in behavioral neuroscience, 12, 321.
Pfurtscheller, G., Brunner, C., Schlögl, A., & Da Silva, F. L. (2006). Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage, 31(1), 153-159.
Plihal, W., & Born, J. J. J. o. c. n. (1997). Effects of early and late nocturnal sleep on declarative and procedural memory. 9(4), 534-547.
Ravaglia, G., Forti, P., Maioli, F., Martelli, M., Servadei, L., Brunetti, N., . . . Mariani, E. (2006). Conversion of mild cognitive impairment to dementia: predictive role of mild cognitive impairment subtypes and vascular risk factors. Dementia and geriatric cognitive disorders, 21(1), 51-58.
Reis, J., Portugal, A. M., Fernandes, L., Afonso, N., Pereira, M., Sousa, N., & Dias, N. S. (2016). An alpha and theta intensive and short neurofeedback protocol for healthy aging working-memory training. Frontiers in aging neuroscience, 8, 157.
Ritchie, K., & Ritchie, C. W. (2012). Mild cognitive impairment (MCI) twenty years on. International Psychogeriatrics, 24(1), 1-5.
Saunders, N. L., & Summers, M. J. (2011). Longitudinal deficits to attention, executive, and working memory in subtypes of mild cognitive impairment. Neuropsychology, 25(2), 237.
Shaw, N. A. (2002). The neurophysiology of concussion. Progress in neurobiology, 67(4), 281-344.
Smith, G. E., Petersen, R. C., Parisi, J. E., Ivnik, R. J., Kokmen, E., Tangalos, E. G., & Waring, S. (1996). Definition, course, and outcome of mild cognitive impairment. Aging, Neuropsychology, and Cognition, 3(2), 141-147.
Sorg, C., Riedl, V., Mühlau, M., Calhoun, V. D., Eichele, T., Läer, L., . . . Zimmer, C. (2007). Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proceedings of the National Academy of Sciences, 104(47), 18760-18765.
Suffczynski, P., Kalitzin, S., Pfurtscheller, G., & Da Silva, F. L. (2001). Computational model of thalamo-cortical networks: dynamical control of alpha rhythms in relation to focal attention. International Journal of Psychophysiology, 43(1), 25-40.
Thornton, C. (2000). Numerical simulations of deviatoric shear deformation of granular media. Géotechnique, 50(1), 43-53.
Vernon, D., Egner, T., Cooper, N., Compton, T., Neilands, C., Sheri, A., & Gruzelier, J. (2003). The effect of training distinct neurofeedback protocols on aspects of cognitive performance. International Journal of Psychophysiology, 47(1), 75-85.
Vogel, F., Bornhövd, C., Neupert, W., & Reichert, A. S. (2006). Dynamic subcompartmentalization of the mitochondrial inner membrane. The Journal of cell biology, 175(2), 237-247.
Wang, J., & Hsieh, S. (2013). Neurofeedback training improves attention and working memory performance. Clin Neurophysiol, 124(12), 2406-2420. doi:10.1016/j.clinph.2013.05.020
Xie, C., Bai, F., Yu, H., Shi, Y., Yuan, Y., Chen, G., . . . Li, S.-J. (2012). Abnormal insula functional network is associated with episodic memory decline in amnestic mild cognitive impairment. NeuroImage, 63(1), 320-327.
Xiong, S., Cheng, C., Wu, X., Guo, X., Yao, L., & Zhang, J. (2014). Working memory training using EEG neurofeedback in normal young adults. Bio-medical materials and engineering, 24(6), 3637-3644.
Yang, J., Pan, P., Song, W., & Shang, H.-F. (2012). Quantitative meta-analysis of gray matter abnormalities in semantic dementia. Journal of Alzheimer's Disease, 31(4), 827-833.
Zoefel, B., Huster, R. J., & Herrmann, C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage, 54(2), 1427-1431.
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-09-03起公開。

  • 如您有疑問,請聯絡圖書館