進階搜尋


 
系統識別號 U0026-1002201416174700
論文名稱(中文) 奈米粒子陣列侷域性表面電漿共振之理論研究—駐波模態、光學相位特性以及瑞利異常
論文名稱(英文) Theoretical Studies on Localized Surface Plasmon Resonances of Nanoparticle Arrays—Standing-Wave Modes, Optical Phase Characteristics, and Rayleigh Anomalies
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 102
學期 1
出版年 103
研究生(中文) 陳文瑜
研究生(英文) Wen-Yu Chen
學號 L78981212
學位類別 博士
語文別 英文
論文頁數 93頁
口試委員 指導教授-林俊宏
口試委員-藍永強
口試委員-張世慧
口試委員-陳學禮
口試委員-李佳翰
中文關鍵字 侷域性表面電漿共振  折射率感測  橢圓偏振術  瑞利異常  奈米點陣列  分裂共振環 
英文關鍵字 localized surface plasmon resonance  refractive index sensing  ellipsometry  Rayleigh anomaly  nanodot array  split-ring resonator 
學科別分類
中文摘要 本論文探討週期性奈米粒子陣列之侷域性表面電漿共振所引發的光學現象,共有三個主題:分裂共振環的駐波模態、奈米點陣列的光學相位特性以及瑞利異常對共振頻譜的影響。
我們改變入射光的入射角以及偏振態,探討這些條件對分裂共振環的駐波模態所產生的影響。由模擬的頻譜發現,斜向入射的線偏振光能激發正向入射時的暗模態;且斜向入射時,左、右圓偏光的頻譜不再重疊。這些光學現象能以入射電場及共振模態的駐波電流之間的平行度解釋,因此,我們提出平行度計算公式,以此公式預測入射光與駐波模態的耦合程度。
我們利用時態模態耦合理論分析銀點陣列之頻譜,並將焦點放在表面電漿共振引發之光學相位特徵。表面電漿共振在反射光的頻譜中引發相位反轉的現象;在穿透光的相位頻譜中引發z形轉折。我們利用時態模態耦合理論推導z形轉折的相位斜率公式,由公式可知,金屬的歐姆吸收會降低相位的斜率。接著我們探討非等向性銀點陣列之相位延遲現象,表面電漿共振在互為垂直偏振光之間引發相位差,此相位差的頻寬遠窄於表面電漿共振的頻寬。我們將相位延遲現象應用於折射率感測,極窄的頻寬能使感測器之品質因素大幅提升。
我們利用時態模態耦合理論探討侷域性表面電漿共振與瑞利異常現象耦合對頻譜產生的影響。我們分析各種週期及點尺寸的金屬點陣列之頻譜,發現一個普適的尺度法則:表面電漿模態在每個共振週期中輻射到遠場的能量與金屬點的覆蓋率成正比。由理論可知,瑞利異常對表面電漿共振頻譜產生四個影響:共振位置紅移、頻譜不對稱、頻寬變窄、相位斜率變陡。由模擬可知,當金屬陣列的點尺寸對週期的比值愈小,瑞利異常的影響愈大。
英文摘要 This thesis presents theoretical studies on the optical characteristics of localized surface plasmon resonances (LSPRs) in spectra of periodic nanoparticle arrays. Three subjects have been discussed: the excitations of standing-wave modes in split-ring resonators (SRRs), the optical phase characteristics of nanodot arrays, and the impacts of Rayleigh anomalies on LSPR spectra.
We investigate the excitations of standing-wave modes of SRRs with different incident angles and polarizations. Two changes at oblique incidence with respect to normal incidence are investigated—the excitations of dark modes with linear polarizations and the deviation of spectra of right- and left-handed circular polarizations. We find that the parallelism between the incident electric field and the induced plasmon current is the key factor affecting the excitation. We propose the use of a P-factor to characterize the ability of incident fields to excite standing-wave modes.
We analytically model the intensity and the phase spectra of silver nanodots with temporal-coupled mode theory (TCMT). The focus is on phase characteristics that are a π jump for reflection and a zigzag transition for transmission. We derive the equation of phase slope at the zigzag transition of transmission. The equation shows that the Ohmic absorption decreases the phase slope. We further investigate plasmonic phase retardation in anisotropic nanodot arrays. We discovered that the bandwidth of phase retardation could be much narrower than the LSPR bandwidth if the long and the short side lengths of the nanodots are very close. We propose the application of plasmonic phase retardation in refractive index sensing. In this sensing algorithm, the sensor figure-of-merit is greatly enhanced.
We have developed a theoretical model based on TCMT for LSPRs coupled with Rayleigh anomalies (TCMT-RA). TCMT-RA is used for analyzing the spectra of nanodot arrays with various periods and dot sizes. We calculate the reciprocal of external quality factor, which means the percentage of LSPR energy radiating to far field per oscillation cycle, and find that the value is universally proportional to the nanodot coverage. The Rayleigh anomalies have four effects on the LSPR spectra, namely, redshift of LSPR, asymmetric line shape, bandwidth reduction, and increased phase slope. The results show that the decrease in the size-to-period ratio of nanodot array enhances the effects of Rayleigh anomalies.
論文目次 Contents i
List of Tables iv
List of Figures v
List of Symbols vii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Localized Surface Plasmon Resonance 1
1.2.1 Quasi-Static Approximation for Small Nanospheres 1
1.2.2 Plasmon Resonances Beyond Quasi-Static Approximation 4
1.3 Thesis Overview 5
Chapter 2 Excitations of Standing-Wave Modes in Split-Ring Resonators 7
2.1 Introduction 7
2.2 Simulation Structures and Methods 8
2.3 Qualitative Interpretation of Excitations of Standing-Wave Modes 9
2.3.1 Standing-Wave Modes in Split-Ring Resonators 9
2.3.2 Excitations of Odd Modes of Perpendicular Polarization at 45° Incidences 11
2.3.3 Excitations of Mode 1L and 1R at 45° Incidences 12
2.4 Mathematical Interpretation of Excitations of Standing-Wave Modes 13
2.4.1 Parallelism Factor 13
2.4.2 Phase Change of Mode 3L with Different Angles of Incidences 15
2.4.3 Parallelism Factor as a Function of Geometry 16
2.5 Summary 17
Chapter 3 Plasmonic Phase Transition and Phase Retardation 27
3.1 Introduction 27
3.2 Plasmonic Phase Transition 29
3.2.1 Spectra of Square Nanodot Array 29
3.2.2 Temporal Coupled-Mode Theory for Nanodot Arrays 29
3.2.3 Procedure for Acquiring TCMT Parameters from Spectra 33
3.2.4 Phase Slope 34
3.3 Plasmonic Phase Retardation 36
3.3.1 Spectra of Anisotropic Nanodot Array 36
3.3.2 Figure-of-Merit of Anisotropic Nanodot Array 37
3.3.3 Experiment: Phase Sensor of an Anisotropic Nanodot Array 38
3.4 Summary 39
Chapter 4 Coupling Between Localized Surface Plasmon Resonances and Rayleigh Anomalies 48
4.1 Introduction 48
4.2 Asymmetric Line-Shapes of Transmission and Reflection 50
4.3 Temporal Coupled-Mode Theory for Plasmon Resonances Coupled with Rayleigh Anomalies 51
4.4 Analysis of Spectra of Nanodot Arrays 56
4.4.1 Procedure for Acquiring TCMT-RA Parameters from Spectra 56
4.4.2 Correlations Between TCMT-RA Parameters and Geometry of Nanodot Arrays 59
4.4.3 Universal Scaling of External Quality Factor 61
4.4.4 Reduction of Full-Width at Half Maximum 62
4.4.5 Increase of Phase Slope 63
4.4.6 Four Impacts of Rayleigh Anomalies on Plasmon Resonance Spectra 66
4.5 Summary 66
Chapter 5 Conclusions 76
5.1 Summary 76
5.2 Outlook 77
References 78
Appendix A Analyzing Spectra of Split-Ring Resonator Arrays with Temporal Coupled-Mode Theory 84
Appendix B Ellipsometric Parameters of a Silver Nanorod Array 85
Appendix C Fabrication of Anisotropic Nanodot Array 87
Appendix D Analysis for Spectra of Silver Nanodot Arrays with Fixed Period of 800 nm and Varied Dot Sizes 89
Appendix E Publications 92
參考文獻 1. S. A. Maier, "Localized Surface Plasmons," in Plasmonics: Fundamentals and Applications (Springer, New York, 2007), pp. 65-88.
2. K. M. Mayer, and J. H. Hafner, "Localized surface plasmon resonance sensors," Chemical Reviews 111, 3828-3857 (2011).
3. S. A. Maier, "Excitation of Surface Plasmon Polaritons at Planer Interfaces," in Plasmonics: Fundamentals and Applications (Springer, New York, 2007), pp. 39-52.
4. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors and Actuators B: Chemical 54, 3-15 (1999).
5. D. J. Griffiths, Introduction to Electrodynamics (Prentice Hall, Upper Saddle River, N.J., 1999).
6. M. Svedendahl, S. Chen, A. Dmitriev, and M. Kall, "Refractometric Sensing Using Propagating versus Localized Surface Plasmons: A Direct Comparison," Nano Letters 9, 4428-4433 (2009).
7. E. A. Coronado, E. R. Encina, and F. D. Stefani, "Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale," Nanoscale 3, 4042-4059 (2011).
8. L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, "Localized surface plasmon resonance spectroscopy of single silver nanocubes," Nano Letters 5, 2034-2038 (2005).
9. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Physical Review B 68, 155427 (2003).
10. F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, "Resonances of individual metal nanowires in the infrared," Applied Physics Letters 89, 253104 (2006).
11. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, "On the reinterpretation of resonances in split-ring-resonators at normal incidence," Optics Express 14, 8827-8836 (2006).
12. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques 47, 2075-2084 (1999).
13. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters 84, 4184-4187 (2000).
14. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
15. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
16. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
17. Kante, A. de Lustrac, J.-M. Lourtioz, and S. N. Burokur, "Infrared cloaking based on the electric response of split ring resonators," Optics Express 16, 9191-9198 (2008).
18. M. Farhat, S. Guenneau, S. Enoch, and A. B. Movchan, "Negative refraction, surface modes, and superlensing effect via homogenization near resonances for a finite array of split-ring resonators," Physical Review E 80, 046309 (2009).
19. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Applied Physics Letters 84, 2943-2945 (2004).
20. A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, "Multiple plasmon resonances from gold nanostructures," Applied Physics Letters 90, 143105 (2007).
21. J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic and electric excitations in split ring resonators," Optics Express 15, 17881-17890 (2007).
22. C. Y. Chen, S. C. Wu, and T. J. Yen, "Experimental verification of standing-wave plasmonic resonances in split-ring resonators," Applied Physics Letters 93, 034110 (2008).
23. Y.-T. Chang, Y.-C. Lai, C.-T. Li, C.-K. Chen, and T.-J. Yen, "A multi-functional plasmonic biosensor," Optics Express 18, 9561-9569 (2010).
24. V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, "Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures," Nano Letters 7, 1996-1999 (2007).
25. B. Bai, Y. Svirko, J. Turunen, and T. Vallius, "Optical activity in planar chiral metamaterials: theoretical study," Physical Review A 76, 023811 (2007).
26. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Physical Review Letters 95, 227401 (2005).
27. B. F. Bai, K. Konishi, X. F. Meng, P. Karvinen, A. Lehmuskero, M. Kuwata-Gonokami, Y. Svirko, and J. Turunen, "Mechanism of the large polarization rotation effect in the all-dielectric artificially chiral nanogratings," Optics Express 17, 688-696 (2009).
28. M. Decker, M. W. Klein, M. Wegener, and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Optics Letters 32, 856-858 (2007).
29. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Science 325, 1513-1515 (2009).
30. K. Do-Hoon, P. L. Werner, and D. H. Werner, "Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation," Optics Express 16, 11802-11807 (2008).
31. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, "Ultrasensitive detection and characterization of biomolecules using superchiral fields," Nature Nanotechnology 5, 783-787 (2010).
32. E. Plum, V. A. Fedotov, and N. I. Zheludev, "Extrinsic electromagnetic chirality in metamaterials," Journal of Optics A-Pure and Applied Optics 11, 074009 (2009).
33. C. H. Lin, H. L. Chen, W. C. Chao, C. I. Hsieh, and W. H. Chang, "Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis," Microelectronic Engineering 83, 1798-1804 (2006).
34. L. F. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," Journal of the Optical Society of America. A, Optics, image science, and vision 14, 2758-2767 (1997).
35. D. W. Lynch, and W. R. Hunter, "Gold (Au)," in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, Inc., 1985), pp. 286-287.
36. E. Hecht, "The Wire-Grid Polarizer," in Optics (Addison-Wesley, Reading, Mass., 2002), pp. 333-334.
37. E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, "Metamaterials: optical activity without chirality," Physical Review Letters 102, 113902 (2009).
38. C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, "Resonances of split-ring resonator metamaterials in the near infrared," Applied Physics B-Lasers and Optics 84, 219-227 (2006).
39. A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, "Mechanisms of Fano resonances in coupled plasmonic systems," Acs Nano 7, 4527-4536 (2013).
40. K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, "Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements," Nano Letters 12, 1655-1659 (2012).
41. S. Ishii, V. M. Shalaev, and A. V. Kildishev, "Holey-metal lenses: sieving single modes with proper phases," Nano Letters 13, 159-163 (2013).
42. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, "Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing," Nano Letters 10, 1936-1940 (2010).
43. S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, "High-efficiency broadband anomalous reflection by gradient meta-surfaces," Nano Letters 12, 6223-6229 (2012).
44. A. Artar, A. A. Yanik, and H. Altug, "Directional double Fano resonances in plasmonic hetero-oligomers," Nano Letters 11, 3694-3700 (2011).
45. T. Pakizeh, and M. Kall, "Unidirectional ultracompact optical nanoantennas," Nano Letters 9, 2343-2349 (2009).
46. A. Roberts, and L. Lin, "Plasmonic quarter-wave plate," Optics Letters 37, 1820-1822 (2012).
47. Y. Zhao, and A. Alu, "Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates," Nano Letters 13, 1086-1091 (2013).
48. V. G. Kravets, F. Schedin, and A. N. Grigorenko, "Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles," Physical Review Letters 101, 087403 (2008).
49. A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, "Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing," Optics Express 17, 21191-21204 (2009).
50. Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, "Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications," Annalen der Physik 524, 637-662 (2012).
51. H. K. Hunt, and A. M. Armani, "Label-free biological and chemical sensors," Nanoscale 2, 1544-1559 (2010).
52. F. Abelès, and T. Lopez-Rios, "Ellipsometry with surface plasmons for the investigation of superficial modifications of solid plasmas," in Polaritons: Proceedings of the First Taormina Research Conference on the Structure of Matter, E. Burstein, and F. D. Martini, eds. (Pergamon Press, New York, 1974), pp. 241-246.
53. F. Abeles, "Surface electromagnetic-waves ellipsometry," Surface Science 56, 237-251 (1976).
54. V. E. Kochergin, A. A. Beloglazov, M. V. Valeiko, and P. I. Nikitin, "Phase properties of a surface-plasmon resonance from the viewpoint of sensor applications," Quantum Electron. 28, 444-448 (1998).
55. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).
56. H. A. Haus, and W. P. Huang, "Coupled-mode theory," Proceedings of the IEEE 79, 1505-1518 (1991).
57. S. H. Fan, W. Suh, and J. D. Joannopoulos, "Temporal coupled-mode theory for the Fano resonance in optical resonators," Journal of the Optical Society of America. A, Optics, image science, and vision 20, 569-572 (2003).
58. W. Ken Xingze, Y. Zongfu, S. Sandhu, and F. Shanhui, "Fundamental bounds on decay rates in asymmetric single-mode optical resonators," Optics Letters 38, 100-102 (2013).
59. H. Y. Lo, C. Y. Chan, and H. C. Ong, "Direct measurement of radiative scattering of surface plasmon polariton resonance from metallic arrays by polarization-resolved reflectivity spectroscopy," Applied Physics Letters 101, 223108 (2012).
60. E. D. Palik, "Silver (Ag)" and "Silicon Dioxide (SiO2) (Glass)," in Handbook of Optical Constants of Solids (Academic Press, Inc., San Diego, 1985), pp. 350-357, 749-763.
61. D. W. Lynch, and W. R. Hunter, eds. Handbook of Optical Constants of Solids (Academic Press, Inc., 1985).
62. M. M. Jakovljevic, G. Isic, B. Vasic, T. W. H. Oates, K. Hinrichs, I. Bergmair, K. Hingerl, and R. Gajic, "Spectroscopic ellipsometry of split ring resonators at infrared frequencies," Applied Physics Letters 100, 161105 (2012).
63. C.-T. Li, H.-f. Chen, I.-W. Un, H.-C. Lee, and T.-J. Yen, "Study of optical phase transduction on localized surface plasmon resonance for ultrasensitive detection," Optics Express 20, 3250-3260 (2012).
64. H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, "Shape- and size-dependent refractive index sensitivity of gold nanoparticles," Langmuir 24, 5233-5237 (2008).
65. C. M. Sotomayor Torres, Alternative Lithography: Unleashing the Potentials of Nanotechnology (Kluwer Academic/Plenum, New York, 2003).
66. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms," Nano Letters 6, 2060-2065 (2006).
67. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philosophical Magazine 4, 396-402 (1902).
68. Rayleigh, "On the dynamical theory of gratings," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 79, 399-416 (1907).
69. D. Maystre, "Theory of Wood's Anomalies," in Plasmonics, S. Enoch, and N. Bonod, eds. (Springer, New York, 2012), pp. 39-83.
70. Y. S. Joe, A. M. Satanin, and C. S. Kim, "Classical analogy of Fano resonances," Physica Scripta 74, 259-266 (2006).
71. P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. G. Rivas, "Universal scaling of the figure of merit of plasmonic sensors," Acs Nano 5, 5151-5157 (2011).
72. G. F. Walsh, and L. Dal Negro, "Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays," Nano Letters 13, 3111-3117 (2013).
73. S. L. Zou, N. Janel, and G. C. Schatz, "Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes," The Journal of Chemical Physics 120, 10871-10875 (2004).
74. S. L. Zou, and G. C. Schatz, "Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays," The Journal of Chemical Physics 121, 12606-12612 (2004).
75. V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, "Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection," Nature Materials 12, 304-309 (2013).
76. W.-Y. Chen, C.-H. Lin, and W.-T. Chen, "Plasmonic phase transition and phase retardation: essential optical characteristics of localized surface plasmon resonance," Nanoscale 5, 9950-9956 (2013).
77. K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, "Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications," Plasmonics 8, 1379-1385 (2013).
78. J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, "Designing and deconstructing the Fano lineshape in plasmonic nanoclusters," Nano Letters 12, 1058-1062 (2012).
79. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied Optics 37, 5271-5283 (1998).
80. W. Khunsin, B. Brian, J. Dorfmueller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and K. Kern, "Long-distance indirect excitation of nanoplasmonic resonances," Nano Letters 11, 2765-2769 (2011).
81. G. F. Walsh, and L. Dal Negro, "Enhanced second harmonic generation from Au nanoparticle arrays by femtosecond laser irradiation," Nanoscale 5, 7795-7799 (2013).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-02-11起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-02-11起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw