進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1001202018474900
論文名稱(中文) 海洋結構物沖刷過程試驗與數值模擬之研究
論文名稱(英文) Experiments and Numerical Simulations on Scouring around Marine Structures
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 108
學期 1
出版年 108
研究生(中文) 陳信宏
研究生(英文) Hsin-Hung Chen
學號 N88001090
學位類別 博士
語文別 英文
論文頁數 174頁
口試委員 指導教授-蕭士俊
共同指導教授-楊瑞源
口試委員-林銘崇
口試委員-陳陽益
口試委員-蔡清標
口試委員-李忠潘
口試委員-吳昀達
中文關鍵字 海洋結構物  沖刷  保護工  水工模型試驗  最大沖刷深度  沖刷範圍  沖刷數值模式 
英文關鍵字 marine structure  scour  scour protection  hydraulic model test, maximum scour depth, scour range  scour numerical model 
學科別分類
中文摘要 本文於國立成功大學水工試驗所之風波流水槽(27m*19m*1m)進行一系列海洋結構物沖刷與保護工之水工模型試驗。針對四種不同型式海洋結構物基礎(單樁、套管式、重力式、群樁)之沖刷試驗,探討海洋結構物周圍之最大沖刷深度與沖刷範圍,並由沖刷試驗結果評估結構物保護工之型式,進一步探討保護工效果與不同保護工型式對結構物周圍沖刷之影響。沖刷試驗過程中並結合沖刷數值模式模擬單樁結構之沖刷行為,並與單樁沖刷試驗結果進行驗證。而將沖刷試驗、數值計算與保護工試驗結果作一整合性之研究與探討,希望對工程上所遭遇之沖刷問題能預期提供其發生之狀況與解決之方式。
海洋結構物與離岸風機基座常受到波浪和海流作用之影響。在台灣大多數開發中的離岸風場之風機基礎或海洋結構物的水深都超過15m。在這種水深下,海洋結構物基礎周圍的沖刷主要受到海流與波流交互作用之影響,將會導致基礎損壞或坍塌問題。因此,本論文研究的重點為海流與波流交互作用對海洋結構基礎的影響,進行了水工模型試驗以研究這些基礎周圍的最大沖刷深度和沖刷範圍。在海流的作用下,經由無因次分析後利用福祿數(Fr)和雷諾數(Re)與相對應無因次最大沖刷深度之間的關係,並將所有結構物沖刷實驗結果進行比較,可得到雷諾數(Re)和相對最大沖刷深度(ds,max/h)之間的迴歸曲線。此外,該迴歸曲線可用於估計在不同流速(U),水深(h)和樁徑(D)條件下單樁、套管式和重力基礎周圍的最大沖刷深度。這些發現對於海洋結構物或海上風力發電機基礎的設計參考是相當有價值的。
除了物理模型沖刷試驗之外,本論文還結合數值模型之沖刷模式計算來模擬單樁結構周圍的沖刷深度和沖刷範圍。初步使用物理模型試驗的沖刷結果來驗證數值沖刷模式的準確性。使用數值沖刷模式計算將減少水工模型試驗之試次和節省時間與經費。本文使用FLOW-3D數值軟體模擬單樁基礎周圍底床的地形變化,並藉由沖刷的試驗結果來加以驗證及調整沖刷模式中敏感度較高之參數。
顯然,沖刷將對海上結構的穩定性構成威脅。在沖刷試驗中預測了海洋結構物周圍的最大沖刷深度和潛在衝擊沖刷範圍。最後根據試驗結果,本研究在海洋結構物周圍進行了各種類型的沖刷防護,並調整保護工範圍和厚度。提出了基礎周圍適當的沖刷防護工作,並進行了測試且有效地防止局部沖刷。此外,不久的將來將通過在技術可行性,風險和成本方面對沖刷或沖刷保護的設計解決方案更進一步之研究。
英文摘要 In this paper, a series of marine structure scour and scour protection hydraulic model tests were carried out at the Wind-Wave-Current Basin (27m*19m*1m) of the Tainan Hydraulics Laboratory, National Cheng Kung University. For the scour tests of four different types of marine structures (i.e., monopile, jacket-type, gravity, pile group), the maximum scour depth and scour range around the marine structure are discussed, and the structure protection is evaluated by the scour test results. The type of structural scour protection is evaluated by the results of the scour tests, then the effects of the protection and the influence of different protection types on the scour around the structures are further explored. During the scour test, the scour process of the monopile structure was simulated using the scour numerical model, and the results of the monopile scour test were verified. The scour experiment, numerical calculation and scour protection test results are an integrated research and discussion. The scour problem encountered in the project is expected to provide the status and solution of its occurrence.
Marine structures and offshore wind turbine platforms are negatively affected by wave and current actions. In Taiwan, the water depth of most of the planned wind turbine foundations or marine structures are more than 15m. At this water depth, scour around marine structure foundations is mainly subject to the ocean current and wave-current interaction, which causes damages or collapse of foundations. Therefore, this study is focused on the influences of ocean current and wave-current interaction on the marine structure foundations. Hydraulic model experiments were conducted to investigate the maximum scour depth and scour range around pillars in these foundations. Under the effects of current, the relationships between the dimensionless maximum scour depth corresponding to the Froude number (Fr) and Reynolds number (Re) were calculated and compared with the experimental results. Then, a regression curve between the Reynolds number (Re) and the relative scour water depth (ds,max/h) was provided empirically, which could be used to estimate the maximum scour depth around the monopile, jacket-type and gravity foundations under different conditions of current velocity (U), water depth (h) and pile diameter (D). The findings are valuable as a design guideline for offshore wind turbine foundations.
In addition to the physical model tests, the scour depth and scour range around the monopile structure was simulated with numerical model calculations. The scour results of physical model tests were preliminary used to verify the accuracy of the numerical model. It would reduce the amounts and the times of hydraulic model tests. In this paper, the FLOW-3D model was used to simulate the topographical variation of the bed around a monopile foundation. The scour test results are used to verify and adjust the parameters with higher sensitivity in the sediment scour model.
Clearly, the scour may be a threat to the stability of offshore structures. The maximum scour depth and the potential impact scour range around the marine structures were then predicted in the moveable bed experiment. Finally, based on the experiment results, various types of scour protection around the marine structures are explored. During the test, the scope and thickness of the protection were adjusted as well. The appropriate scour protection work around the foundation was proposed and tested to be effective in preventing local scour. The study of design solutions with and without scour protection will be investigated by the comparison with respect to technical feasibility, risks and costs in the near future.
論文目次 Abstract I
中文摘要 III
誌謝 V
Contents VI
List of tables IX
List of figures XII
List of symbols XX
1. Introduction 1
1.1 Research motivation and purpose 1
1.2 Literature review 4
1.2.1 Current-induced scouring 4
1.2.2 Wave-induced scouring 6
1.2.3 Wave-current induced scouring 8
1.2.4 Scour protection 10
1.2.5 Numerical models for scouring 13
1.3 Outline of the dissertation 14
2. Approach Methods 16
2.1 Physical model 16
2.1.1 Test equipment and generation of current system 16
2.1.2 Instruments and data collection system 18
2.1.3 Model law 20
2.1.4 Test materials 23
2.1.5 Test procedure 24
2.2 Numerical model 27
2.2.1 Three-dimensional flow model 27
2.2.2 Sediment scour model 28
3. Scour Experiment of Marine Structures 35
3.1 Marine structure type 35
3.2 Monopile foundation 38
3.2.1 Test condition 38
3.2.2 Experimental process and results 39
3.3 Jacket-type foundation 52
3.3.1 Test condition 52
3.3.2 Experimental process and results 54
3.4 Gravity foundation 68
3.4.1 Experimental setup and test condition 71
3.4.2 Experimental process and results 72
3.5 Pile group 78
3.5.1 Experimental setup and test condition 79
3.5.2 Experimental process and results 81
4. Scouring of Numerical Simulation 88
4.1 Scour model and parameter setting 88
4.2 Parameter improved 91
4.3 Numerical simulation results 99
5. Discussion on The Maximum Scour Depth 106
5.1 The importance of the maximum scour depth 106
5.2 Dimension analysis 106
5.3 Hyperbolic method 108
5.4 The maximum scour depth analysis 113
6. Scour Protection for the Marine Structures 119
6.1 Protection type 119
6.2 Monopile scour protection 120
6.3 Jacket-Type scour protection 125
6.3.1 Block matrasses protection 125
6.3.2 Soft scour protection for jacket-type foundation 128
6.3.3 Riprap protection 134
6.4 Gravity scour protection 143
6.5 Pile group scour protection 147
6.6 Scour protection stability and economic benefits 152
6.6.1 Scour protection stability 152
6.6.2 Economic benefits 154
7. Conclusions and Suggestions 156
7.1 Conclusions 156
7.2 Suggestions 158
References 160
Vita 168

參考文獻 1.Brethour J., 2003. Modeling Sediment Scour. Technical note FSI-03-TN-62, Flow Science.
2.Brethour, J.M., Hirt, C.W., 2009. Drift Model for Two-Component Flows, Technical note FSI-14-TN-83, Flow Science.
3.Brethour, J., Burnham, J., 2010. Modeling Sediment Erosion and Deposition with the FLOW-3D Sedimentation & Scour Model. Technical note FSI-09-TN-85, Flow Science.
4.Breusers, H.N.C., Nicollet, G., Shen, H.W., 1977. Local scour around cylindrical piers. Journal Hydraulic Res., 15, 211-252.
5.Buck, B.H., 2007. Experimental trials on the feasibility of offshore seed production of the mussel Mytilusedulis in the German Bight: Installation, technical requirements and environmental conditions. Helgol. Mar. Res., 61, 81-101.
6.Chatterjee, S.S., Ghosh, S.N., Chatterjee, M., 1994. Local scour due to submerged horizontal jet. Journal of Hydraulic Engineering, 120(8), 973-992.
7.Chen, H.H., Yang, R.Y., Jiang, W.P., Hwung, H.H., Wu, N.T., 2010. Experimental study on the loading and scour of the jacket type offshore wind turbine foundation. The 32nd International Conference on Coastal Engineering (ICCE 2010), 30 June- 5 July 2010, Shanghai, China.
8.Chen, H.H., Yang, R.Y., Hwung, H.H., Chen, Y.Y., 2012. Physical modeling study on scour and scour protection for sea-crossing bridge piers. Current Development in Oceanography, Vol. 4, Numbers 1-2, 1-27.
9.Chen, H.H., Li, J.W., Yang, R.Y., Hwung, H.H., 2014. Scour around the jacket type offshore wind turbine foundation with the composite protection. Journal of Coastal and Ocean Engineering, Vol. 14, No. 2, 77-92.
10.Chen, H.H., Yang, R.Y., Hwung, H.H., 2014. Study of Hard and Soft Countermeasures for Scour Protection of the Jacket-Type Offshore Wind Turbine Foundation. Journal of Marine Science and Engineering (JMSE), 2(3), 551-567, doi:10.3390/jmse2030551.
11.Chen, Y.L., Hsiao, S.C., 2016. Generation of 3D water waves using mass source wavemaker applied to Navier-Stokes model. Coastal Engineering, 109, 76-95.
12.De Bruyn, C.A., 1988. Scour Near Platform Pier due to Current and Breaking Waves. Department of Coastal Engineering, Delft University Technology: Deft, The Netherlands.
13.den Boon, J.H., Sutherland, J., Whitehouse, R., Soulsby, R., Stam, C.J.M., Verhoeven, K., Hogedal, M., Hald, T., 2004. Scour behaviour and scour protection for monopile foundations of offshore wind turbines. In Proceedings of the 2004 European Wind Energy Conference, London, UK, 14.
14.Fowler, J.E., 1993. Coastal scour problems and methods for prediction of maximum scour. Coastal Engineering Research Centre, U.S. Army Corps of Engineers, Technical Report CERC-93-8.
15.Gladstone, C., Phillips, J.C., Sparks R.S.J., 1998. Experiments on bidisperse, constant-volume gravity currents: propagation and sediment deposition. Sedimentology 45, 833-843.
16.Graf, W.H., Yulistiyanto, B., 1998. Experiments on flow around a cylinder; the velocity and vorticity fields. Journal of Hydraulic Research, 36(4), 637-654.
17.Hansen, E.A., Simonsen, H.J., Nielsen, A.W., Pedersen, J., Høgedal, M., 2007. Scour protection around offshore wind turbine foundations, full-scale measurements. In Proceedings of the European Offshore Wind Conference, Berlin, Germany, 4-6 December 2007, 132-138.
18.Heller, V., 2011. Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research, 49(3), 293-306.
19.Herbich, J.B., Schiller, R.E., Jr., Watanabe, R.K., Dunlap, W.A., 1984. Seafloor Scour Design Guidelines for Ocean-Founded Structures. Marcell Dekker, Inc., New York, NY, xiv+320.
20.Hotta, S., Mizugushi, M., 1980. A field study of waves in surf zone. Coastal Engineering in Japan, Vol. 23.
21.Hoffmans, G.J.C.M., Verheij, H.C., 1997. Scour Manual. Balkema, Rotterdam, The Netherlands.
22.Hudson, R.Y., Herrmann, F.A., Sager, R.A., Whalin, R.W., Keulegan, G.H., Chatham, C.E., Hales, L.Z., 1979. Coastal Hydraulic Models. Special Report No. 5, U.S. Army Engineer Waterways Experiment Station: Vicksburg, MS, USA.
23.Hughes, S.A., 1993. Physical Models and Laboratory Techniques in Coastal Engineering. World Scientific, Singapore.
24.Jehanno, P., Marcellin, L., Guilbaud, C., 2012. Laboratory scouring measurements: lessons learned regarding classic methods and recent or new methods. Proc. 6th Int. Conf. on Scour and Erosion, Paris, France, 371-378.
25.Jentoft, S., Son, T.C, Bjorkan, M., 2007. Marine Protected Areas: Agovernance System Analysis. Hum. Ecol. 2007, 35, 611-622.
26.Kumar, V., Raju, K.G.R., Vittal, N., 1999. Reduction of Local Scour around Bridge Piers Using Slots and Collars. Journal of Hydraulic Engineering, Vol. 125, Issue 12, December 1999.
27.Ku, C.Y., Chien, L.K., 2016. Modeling of Load Bearing Characteristics of Jacket Foundation Pile for Offshore Wind Turbines in Taiwan. Energies 2016, 9 (8), 625; doi:10.3390/en9080625.
28.Lim, S. Y., 1997. Equilibrium clear-water scour around an abutment. Journal of Hydraulic Engineering, Vol. 123, No. 3.
29.Mehaute, B.I., 1976. An Introduction to hydrodynamics and water waves. Springer Verlag, New York.
30.Melville, B.W., 1997. Pier and abutment scour: integrated approach. Journal of Hydraulic Engineering, Vol. 123, No. 2.
31.Melville, B.W., Sutherland, A.J., 1988. Design method for local scour at bridge piers. Journal of Hydraulic Engineering, ASCE, Vol. 114, No. 10.
32.Miles, J., Martin, T., Goddard, L., 2017. Current and wave effects around windfarm monopile foundations. Coastal Engineering, 121, 167-178.
33.Nielsen, A.W., Hansen, E.A., 2007. Time-varying wave and current-induced scour around offshore wind turbines. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 5, 399-408.
34.Nielsen, A.W., Sumer, B.M., Fredsøe, J., Christensen, E.D., 2010. Scour protection around offshore wind turbines, monopiles. In Proceedings of the Fifth International Conference on Scour and Erosion 2010, Volume 1, 440-449.
35.Nielsen, A.W., 2011. Scour protection of offshore wind farms. Ph.D. thesis, Section of Coastal, Maritime and Structural Engineering, Dept. of Mechanical Engineering, Technical University of Denmark.
36.Nielsen, A.W., Sumer, B.M., Fredsøe, J., Christensen, E.D., 2011. Sinking of armour layer around a cylinder exposed to a current. Proceedings of the Institution of Civil Engineers - Maritime Engineering, 164(4), 159-172.
37.Nielsen, A.W., Liu, X., Sumer, B.M., Fredsøe, J., 2013. Flow and bed shear stresses in scour protections around a pile in a current. Coastal Engineering, 72, 20-38.
38.Oumeraci H., 1984. Scale effects in coastal hydraulic models. Symposium on scale effects in modeling hydraulic structure, International association for hydraulic research.
39.Payne, G., 2008. Guidance for the experimental tank testing of wave energy converters. SuperGen Marine, The University of Edinburgh, UK, Version 01b.
40.Porter, K.E., 2016. Seabed Scour Around Marine Structures in Mixed and Layered Sediments. Ph.D. Thesis, University College London (UCL), London, UK.
41.Rudolph, D., Bos, K.J., 2006. Scour around a monopile under combined wave-current conditions and low KC-numbers. Proceeding of the International Conference on Scour and Erosion (ICSE), Amsterdam. CD-ROM.
42.Rudolph, D., Raaijmakers, T.C., 2007. Scour around jack-up legs with cone-shaped footings and skirts. The 11th International Conference “The Jack-Up Platform Design, Construction & Operation”, 11-12 September 2007, City University, London, England.
43.Sarpkaya, T., 1975. Forces on Cylinder and Spheres in an Oscillating Fluid. J. Applied Mechanics ASME, Vol. 42.
44.Schachner, J., 2004. Power Connections for Offshore Wind Farms. Master’s Thesis, Delft University, Delft, The Netherlands; University of Leoben, Leoben, Austria, January 2004.
45.Schendel, A., Goseberg, N., Schlurmann, T., 2014. Experimental study on the performance of coarse grain materials as scour protection. Coastal Engineering Proceedings, 1(34), 58.
46.Sheppard, D.M., Miller Jr., W., 2006. Live-Bed Local Pier Scour Experiments. Journal of Hydraulic Engineering, Vol. 132, No. 7.
47.Simon, J.M., Johansen, N., Danyluk, R., 2009. Design and Experimental Testing of New Scour Prevention Deveices for Offshore Wind Turbine Monopile foundations. Proceedings of European Offshore Wind Conference, Stockholm, Sweden, 14-16 September 2009.
48.Sonneville, B.D., Rudolph, D., Raaijmakers, T.C., 2010. Scour reduction by collars around offshore monopiles. Scour and Erosion, 460-470, doi: 10.1061/41147(392)44.
49.Soulsby, R., 1997. Dynamics of Marine Sands. Thomas Telford Publications, London.
50.Soulsby, R.L., Whitehouse, R.J.S.W., 1997. Threshold of sediment motion in Coastal Environments. Proc. Combined Australian Coastal Engineering and Port Conference, EA, 149-154.
51.Stahlmann, A. and Schlurmann, T., 2012. Investigations on Scour Development at Tripod Foundations for Offshore Wind Turbines: Modeling and Application. Coastal Engineering Proc. 2012, 1, doi:10.9753/icce.v33.sediment.90.
52.Sumer, B.M., Jensen, R., Mao, Y., Fredsøe, J., 1988. The effect of lee-wake on scour below pipelines in current. J. Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 114, No. 5, 599-614.
53.Sumer, B.M., Fredsøe, J., Christiansen, N., 1992. Scour around vertical pile in waves. ASCE J. Waterw. Port Coastal Ocean Engineering, 118, 15-31.
54.Sumer, B.M., Christiansen, N., Fredsøe, J., 1993. Influence of cross section on wave scour around piles. Journal of Waterways, Port, Coastal and Ocean Engineering, ASCE, 119 (5), 477-495.
55.Sumer, B.M., Fredsøe, J., 1996. Scour around pipelines in combined waves and current. Proc. 7th International Conference on Offshore Mechanics and Arctic Engineering, Vol. 5, 595-602.
56.Sumer, B.M. and Fredsøe, J., 1997. Hydrodynamics around cylindrical structures. Volume 12 of Advanced series on ocean engineering, World Scientific, Singapore.
57.Sumer, B.M., Fredsøe, J., 2001a. Wave scour around a large vertical circular cylinder. ASCE J. Waterw., Port, Coastal Ocean Eng. 127 (3), 125-134.
58.Sumer, B.M., Fredsøe, J., 2001b. Scour around a pile in combined waves and current. ASCE J. Hydraul. Eng. 127 (5), 403-411.
59.Sumer, B.M., Truelsen, C., Sichmann, T., Fredsøe, J., 2001. Onset of scour below pipelines and self-burial. Coastal Engineering, 42 (4), 213-235.
60.Sumer, B.M., Whitehouse, R.J.S., Tørum, A., 2001. Scour around coastal structures: a summary of recent research. Coastal Engineering, 44, 153-190.
61.Sumer, B.M., Fredsøe, J., 2002. The Mechanics of Scour in the Marine Environment - Volume 17, World Scientific, Singapore.
62.Sumer, B.M., 2004. Physical and mathematical modelling of scour. Proc. 2nd Int. Conf. on Scour and Erosion, Meritus Mandarin, Singapore, 29-46.
63.Sumer, B.M., Hatipoglu, F. and Fredsøe, J., 2004. Wave scour around a vertical circular pile in silt. Proc. 2nd Int. Conf. on Scour and Erosion, Meritus Mandarin, Singapore, 498-505.
64.Sumer, B.M., Hatipoglu, F., Fredsøe, J., Hansen, N.O., 2006a. Critical flotation density of pipelines in soils liquefied by waves and density of liquefied soils. J. Waterway, Port, Coastal and Ocean Eng., 132(4), 252-265.
65.Sumer, B.M., Hatipoglu, F., Fredsøe, J., Sumer, S.K., 2006b. The sequence of sediment behaviour during wave-induced liquefaction. Sedimentology, 53, 611-629.
66.Sumer, B.M., 2007. Mathematical modelling of scour: A review. J. Hydraul. Res., 45(6), 723-735.
67.Sumer, B.M., Hatipoglu, F., Fredsøe, J., 2007. Wave scour around a pile in sand, medium dense and dense silt. J. Waterway, Port, Coastal and Ocean Eng., 133(1), 14-27.
68.Sumer, B.M., 2008. Coastal and offshore scour/erosion issues - recent advances. Proc. 4th Int. Conf. on Scour and Erosion, Tokyo, Japan, K-6, 85-94.
69.Sumer, B.M., Nielsen, A.W., 2013. Sinking failure of scour protection at wind turbine foundation. Proc. ICE Energy, 166(4), 170-188.
70.Sumer, B.M., Petersen, T.U., Locatelli, L., Fredsøe, J., Musumeci, R. E., Foti, E., 2013. Backfilling of a scour hole around a pile in waves and current, J. Waterway, Port. Coastal and Ocean Eng., 139(1), 9-23.
71.Tsai, C.P., Chen, Y.C., Chen, C.J., Lin, C., 2016. Simulation of the effect of breakwater on the propagation of solitary waves. Journal of Marine Science and Technology, Vol. 24, No. 4, 780-789, DOI: 10.6119/JMST-016-0311-2.
72.Van Rijn, L.C., 1984. Sediment Transport, Part I: Bed load transport. Journal of Hydraulic Engineering, 110(10), 1431-1456.
73.Van Rijn, L.C., 1998. Principles of Coastal Morphology. Aqua Publications: Amsterdam, ISBN 90-800356-3-7.
74.Van Der Tempel, J., Zaaijer, M. B., Subroto, H., 2004. The effects of scour on the design of offshore wind turbines. Proc. 3rd Int. Conf. on Marine Renewable Energy, London, UK, 27-35.
75.Wei, G., Brethour, J. M., Gruenzner M., Burnham, J., 2014. The Sediment Scour Model in FLOW-3D. Technical note FSI-14-TN-99, Flow Science.
76.Welzel M., Schendel, A., Hildebrandt, A., Schlurmann, T., 2019. Scour development around a jacket structure in combined waves and current conditions compared to monopile foundations. Coastal Engineering, 152, 1-15.
77.Whitehouse, R.J.S., 1998. Scour at Marine Structures. Thomas Telford Limited, London.
78.Winterwerp, J.C., Bakker, W.T., Mastbergen, D.R., Van Rossum, H., 1992. Hyperconcentrated sand-water mixture flows over erodible bed. J. Hydraul. Eng., 118, 1508-1525.
79.Yang, R.Y., Chen, H.H., Hwung, H.H., Jiang, W.P., Wu, N.T., 2010. Scour around the jacket type offshore wind turbine foundation in shallow water. The Twentieth International Offshore and Polar Engineering, June 20-26, 2010, Beijing, China, 687-691.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-02-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw