進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1001202003430300
論文名稱(中文) 氧化鋅及氧化鋅鎂薄膜壓電閘極效應之探討
論文名稱(英文) Investigation into the piezo-gating effect on ZnO and MgZnO thin films
校院名稱 成功大學
系所名稱(中) 尖端材料國際碩士學位學程
系所名稱(英) International Curriculum for Advanced Materials Program
學年度 108
學期 1
出版年 109
研究生(中文) 傑度達
研究生(英文) Jit Dutta
學號 NB6077027
學位類別 碩士
語文別 英文
論文頁數 72頁
口試委員 指導教授-劉全璞
口試委員-王瑞琪
口試委員-陳貞夙
口試委員-張高碩
中文關鍵字 none 
英文關鍵字 Piezoelectric  Piezopotential  Piezo-gating effect  ZnO & MgZnO thin film  Simulation  Gauge Factor 
學科別分類
中文摘要 none
英文摘要 Our work demonstrates a unique device design to investigate the piezo-gating effect on ZnO and MgZnO thin-film. Herein, we have grown highly c axis oriented crystalline ZnO and MgZnO thin-film on top of SiO2/Si substrate via RF sputtering deposition method. In order to investigate the piezo-gating effect, we have used top and bottom electrodes. It is observed that the presence of an external compressive force induces piezopotential, which affects the channel behavior by a redistributing internal charge carrier. We have observed nearly ±7% changes in current ratio with and without external force for ZnO thin-film and around 11% for MgZnO, which can be attributed to piezo-gating effect. To validate the experimental results, we have carried out COMSOL Multiphysics Simulations. In simulation, we have carried out theoretical calculation on ideal ZnO and also get a similar change in current around ±7%. We have also achieved a higher gauge factor for piezotronic transistor around 10x103, due to higher current response and low strain value.
論文目次 Abstract i
Table of Content iii
List of Figures v
List of Tables xii
Chapter 1. Introduction and Motivations 1
1.1 Piezotronics 1
1.1.1 Piezoelectric effect 1
1.1.2 Semiconductor Physics and Piezotronics 2
1.2 Zinc Oxide composites 5
1.2.1 Technological applications 5
1.2.2 Structural properties 5
1.2.3 Physical Properties 6
1.3 Motivation 8
Chapter 2. Literature Review 9
2.1 Introduction to Piezotronics 9
2.2 Piezotronic Sensors 9
2.2.1 Strain Sensor 9
2.2.2 Gas sensor 10
2.2.3 other sensors 10
2.3 Piezotronic logic devices 11
2.4 Piezo-gating effect 11
Chapter 3. Experimental Setup 19
3.1 Experimental Process flow 19
3.2 Piezotronic transistor fabrication process flow 20
3.3 Device synthesis process 21
3.3.1 Substrate cleaning 21
3.3.2 RF Sputtering 21
3.3.3 Annealing 21
3.3.4 Electrode deposition 22
3.3.5 Device Description 22
3.4 Morphology and Crystal Structure Characterization 25
3.4.1 Scanning Electron Microscopy (SEM) 25
3.4.2 X-Ray Diffractometer (XRD) 27
3.4.3 Transmission Electron Microscopy (TEM) 29
3.5 Electrical Measurement 31
3.6 Simulation of Piezotronic and Piezo-gating effect 32
Chapter 4. Results and Discussion 33
4.1 SEM characterization 33
4.2 XRD analysis 37
4.3 TEM characterization 39
4.4 PL analysis 41
4.4 Electrical measurement 43
4.1.1 Carrier Concentration comparison between different samples 43
4.1.2 The study of the Piezo-gating effect 47
4.1.3 The explanation of the mechanism behind Piezo-gating effect 54
4.1.4 Gauge factor calculation 58
4.5 Simulation 59
Chapter 5. Conclusion and Future aspects 67
Chapter 6. References 69
參考文獻 [1] X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, Z.L. Wang, Nano letters, 6 (2006) 2768-2772.
[2] G. Gautschi, Piezoelectric sensors, Piezoelectric Sensorics, Springer2002, pp. 73-91.
[3] J.F. Nye, Physical properties of crystals: their representation by tensors and matrices, Oxford university press1985.
[4] A. Arnau, Piezoelectric transducers and applications, Springer2004.
[5] W.G. Cady, Piezoelectricity: an introduction to the theory and applications of electomechanical phenomena in crystals, 1964.
[6] J. Zhou, P. Fei, Y. Gao, Y. Gu, J. Liu, G. Bao, Z.L. Wang, Nano letters, 8 (2008) 2725-2730.
[7] A. Cowley, S. Sze, Journal of Applied Physics, 36 (1965) 3212-3220.
[8] Y. Zhang, Y. Liu, Z.L. Wang, Advanced Materials, 23 (2011) 3004-3013.
[9] D.A. Neamen, Semiconductor physics and devices: basic principles, New York, NY: McGraw-Hill2012.
[10] M. Allen, C. Swartz, T. Myers, T. Veal, C. McConville, S. Durbin, Physical Review B, 81 (2010) 075211.
[11] K. Ozawa, K. Mase, Physical Review B, 83 (2011) 125406.
[12] K. Kumarappan, Dublin City University2015.
[13] D.-K. Hwang, M.-S. Oh, J.-H. Lim, S.-J. Park, Journal of Physics D: Applied Physics, 40 (2007) R387.
[14] L. Dake, D. Baer, J. Zachara, Surface and Interface analysis, 14 (1989) 71-75.
[15] A. Molle, M.N.K. Bhuiyan, G. Tallarida, M. Fanciulli, Applied physics letters, 89 (2006) 083504.
[16] D. Briggs, Faraday Discussions of the Chemical Society, 60 (1975) 81-88.
[17] J. Singh, P. Kumar, K.S. Hui, K. Hui, K. Ramam, R. Tiwari, O. Srivastava, CrystEngComm, 14 (2012) 5898-5904.
[18] F. Shan, Y. Yu, Journal of the European Ceramic Society, 24 (2004) 1869-1872.
[19] M.K. Yadav, M. Ghosh, R. Biswas, A.K. Raychaudhuri, A. Mookerjee, S. Datta, Physical Review B, 76 (2007) 195450.
[20] Y.H. Mohammed, Superlattices and Microstructures, (2019).
[21] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, Morkoç, Journal of applied physics, 98 (2005) 11.
[22] Z.L. Wang, Advanced Materials, 24 (2012) 4632-4646.
[23] J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, Z.L. Wang, Nano letters, 8 (2008) 3035-3040.
[24] S. Niu, Y. Hu, X. Wen, Y. Zhou, F. Zhang, L. Lin, S. Wang, Z.L. Wang, Advanced materials, 25 (2013) 3701-3706.
[25] C. Pan, R. Yu, S. Niu, G. Zhu, Z.L. Wang, Acs Nano, 7 (2013) 1803-1810.
[26] G. Hu, R. Zhou, R. Yu, L. Dong, C. Pan, Z.L. Wang, Nano Research, 7 (2014) 1083-1091.
[27] W. Wu, Y. Wei, Z.L. Wang, Advanced Materials, 22 (2010) 4711-4715.
[28] K. Gupta, S. Brahma, J. Dutta, B. Rao, C.-P. Liu, Nano Energy, 55 (2019) 1-21.
[29] Y. Zhou, Y. Wu, W. Asghar, J. Ding, X. Su, S. Li, F. Li, Z. Yu, J. Shang, Y. Liu, ACS Applied Electronic Materials, 1 (2019) 1866-1872.
[30] P.A. Alekseev, V.A. Sharov, M.S. Dunaevskiy, D.A. Kirilenko, I.V. Ilkiv, R.R. Reznik, G.E. Cirlin, V.L. Berkovits, Nano letters, 19 (2019) 4463-4469.
[31] Z. Qu, Y. Fu, B. Yu, P. Deng, L. Xing, X. Xue, Sensors and Actuators B: Chemical, 222 (2016) 78-86.
[32] P. Bhatia, M. Nath, Journal of Water Process Engineering, 33 (2020) 101017.
[33] P. Das, R. Biswal, R. Choudhary, S. Khan, R. Meena, N. Mishra, P. Mallick, Materials Research Express, 6 (2019) 106413.
[34] R. Yu, C. Pan, J. Chen, G. Zhu, Z.L. Wang, Advanced Functional Materials, 23 (2013) 5868-5874.
[35] R. Yu, C. Pan, Z.L. Wang, Energy & Environmental Science, 6 (2013) 494-499.
[36] L. Chen, F. Xue, X. Li, X. Huang, L. Wang, J. Kou, Z.L. Wang, ACS nano, 10 (2015) 1546-1551.
[37] R. Yu, W. Wu, Y. Ding, Z.L. Wang, ACS nano, 7 (2013) 6403-6409.
[38] W. Wu, Z.L. Wang, Nano letters, 11 (2011) 2779-2785.
[39] L. Wang, S. Liu, Z. Zhang, X. Feng, L. Zhu, H. Guo, W. Ding, L. Chen, Y. Qin, Z.L. Wang, Nano Energy, 60 (2019) 724-733.
[40] R. Pessoa, M. Fraga, L. Santos, N. Galvão, H. Maciel, M. Massi, Plasma-assisted techniques for growing hard nanostructured coatings: An overview, Anti-Abrasive Nanocoatings, Elsevier2015, pp. 455-479.
[41] P. Liu, T. Luo, J. Xing, H. Xu, H. Hao, H. Liu, J. Dong, Nanoscale research letters, 12 (2017) 558.
[42] B. Inkson, Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization, Materials characterization using nondestructive evaluation (NDE) methods, Elsevier2016, pp. 17-43.
[43] A. Chatterjee, Noyes Publications2001.
[44] D.B. Williams, C.B. Carter, The transmission electron microscope, Transmission electron microscopy, Springer1996, pp. 3-17.
[45] Y.J. Chen, S. Brahma, C.P. Liu, J.-L. Huang, Journal of Alloys and Compounds, 728 (2017) 1248-1253.
[46] Z.L. Wang, Wiley Encyclopedia of Electrical and Electronics Engineering, (2001) 1-18.
[47] Y. Liu, M. Kauser, D. Schroepfer, P. Ruden, J. Xie, Y. Moon, N. Onojima, H. Morkoc, K.-A. Son, M. Nathan, Journal of applied physics, 99 (2006) 113706.
[48] C.H. Wang, K.Y. Lai, Y.C. Li, Y.C. Chen, C.P. Liu, Advanced Materials, 27 (2015) 6289-6295.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-02-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw