進階搜尋


下載電子全文  
系統識別號 U0026-0911201716121000
論文名稱(中文) 鉀離子摻雜與後硫化處理於銅鋅錫硫硒薄膜太陽能電池之研究
論文名稱(英文) Research of Potassium-doping and Post-sulfurization on CZTSSe Thin Film Solar Cells
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 曹瑞哲
研究生(英文) Ruei-Jhe Chao
學號 N26041076
學位類別 碩士
語文別 中文
論文頁數 76頁
口試委員 口試委員-李偉民
口試委員-許正興
口試委員-曾靜芳
口試委員-蕭竹芸
指導教授-施權峰
中文關鍵字 銅鋅錫硫硒  水溶液  鹼金屬摻雜  後硫化 
英文關鍵字 Cu2ZnSn(S ,Se)4(CZTSSe)  Solution  Alkali metal doping,Post-sulfurization 
學科別分類
中文摘要 Cu2ZnSn(S,Se)4(CZTSSe)是極具發展潛力的吸收層材料,與現在的CdTe或Cu(In,Ga)(S,Se)2相比,由於鎘為重金屬環境與人體有害,且銦地殼含量稀少且昂貴。而選來與其替換的鋅與錫地殼含量豐富,成本低廉且對環境友善。
研究使用DMSO為溶劑配置溶液,並藉由旋轉塗佈法製備,研究中探討不同鉀離子摻雜濃度對於薄膜的影響,利用SEM、EDS分析硒化後薄膜與成分比例之變化、XRD與Raman確認CZTSSe薄膜之晶體結構,將CZTSSe薄膜製作為元件並透過I-V量測了解其光電特性。
由結果顯示,鉀離子摻雜後,其表面緻密度提高,且結晶邊界缺陷減少,然而隨摻雜濃度增加,底層開始出現孔洞,表面緻密度變差,甚至比未摻雜前產生更多孔洞,隨後再利用不同參雜濃度製作光電元件,其光電轉換效率也與表面形貌有一致性,呈現先上升後下降的情形。在溶液中摻雜一定比例的鉀離子能夠使表面緻密度提高,對元件的表現有相當的幫助,使用此方法所製作之元件效率可達4.94%,開路電壓為0.26V,短路電流密度為48.57mA/cm2,填充因子為40%。
為了將CZTSSe表層(CZTS空乏區寬度只小於100nm)硫化以達到提升開路電壓的同時仍維持短路電流的目的,進一步的實驗採取將硒化後的CZTSSe薄膜再次放入爐管中進行硫化,經由EDS以及XRD分析,我們發現經過不同溫度的再硫化後薄膜中硒的成分將被硫以不同比例所取代,因此可以藉由控制退火溫度以及時間來調整硫與硒之間的比例並且進一步達到控制薄膜的能帶的目的。
英文摘要 SUMMARY
CZTSSe is a promising material for thin film solar cells, which consists of earth-abundant, low-cost and environmentally friendly material compared to CIGS or CdTe. CZTSe thin films were fabricated using DMSO-based spin coating technique. In this work, we investigate the effects of potassium-doping concentration on the selenized CZTSSe thin film. EDS and SEM were performed to analyze the change of composition and morphology of films. XRD and Raman were used to confirm the crystal structure of CZTSSe thin film. CZTSSe-based device was measured through I-V measurement in order to know the photoelectric property.
The result shows that after adding potassium ion, we obtained a denser surface and the grain boundary defects were improved. However as the doping concentration increased the morphology of the film became worse. Holes appeared at the bottom of the film and even more than the film before doping. Then we made devices with different doping concentration and we finally found out that the efficiencies and the morphologies are consistent, which increasing first and then dropping. Thus adding specific amount of potassium is beneficial to the performance of device. The best solar cells showed a conversion efficiency of 4.94%, open-circuit voltage of 0.26V, short-circuit current of 48.57mA/cm2, fill factor of 40%.
To improve the open circuit voltage by sulfurizing the surface of CZTSSe film (The depletion region of CZTS is thinner than 100nm), we put the CZTSSe film into the sulfurization furnace again trying to transfer the surface into CZTS film. By XRD and EDS analyzing, we found out that after different sulfurization temperature annealing, selenium element in the film was replaced by sulfur in different composition. Thus we can achieve our goal of controlling the bandgap of the film by controlling annealing temperature and time.
Keywords: Cu2ZnSn(S ,Se)4(CZTSSe), Solution, Alkali metal doping, Post-sulfurization
論文目次 目錄
摘要 I
目錄 XIII
圖目錄 XV
表目錄 XVII
第一章 緒論 1
1-1 前言 1
1-2 太陽能電池簡介 2
1-2-1 矽晶太陽能電池 2
1-2-2 薄膜太陽能電池 3
1-2-3 CZTSSe太陽能電池 3
第二章 理論基礎 5
2-1 半導體 5
2-2 PN接面 6
2-3 異質接面 7
2-4 金屬半導體接面 8
2-4-1 蕭特基能障 9
2-4-2 歐姆接觸(Omic contact) 10
2-5 太陽能電池原理 11
2-5-1 太陽輻射(Solar Radiation) 11
2-5-2 操作原理 14
2-5-3 太陽能電池等效電路 16
2-5-4 串聯電阻與並聯電阻的效應 17
2-5-5 太陽能電池的參數 18
2-5-6 太陽能電池量子效率 20
2-6 銅鋅錫硒(CZTSSe)太陽能電池文獻回顧 22
2-6-1 材料特性 22
2-6-2 CZTSSe的晶格缺陷(Defect) 23
2-6-3 元素比例與二次相(Secondary Phase) 24
2-6-4 鹼金屬對CZTSSe吸收層的影響 27
2-6-5 Se含量變化對Cu2ZnSn(S1-xSex)4之影響 27
2-6-6 CZTSSe研究發展與效率較佳的團隊 29
2-7 研究動機 29
第三章 實驗方法 31
3-1 CZTS太陽能電池結構簡介 31
3-2 實驗流程 34
3-2-1 實驗流程架構 34
3-2-2 鉬基板準備與清洗 34
3-2-3 參雜鉀離子銅鋅錫硫前驅物溶液準備與塗佈 35
3-2-4 硒化爐管製成 36
3-2-5 硫化爐管製程 36
3-2-6 去除表層二次相 36
3-2-7 緩衝層CdS製備 37
3-2-8 窗口層製備 37
3-2-9 金屬導電電極製備 38
3-3 儀器介紹 39
3-3-1 高解析掃描式電子顯微鏡(HR-SEM) 39
3-3-2 多功能X光繞射儀 40
3-3-3 拉曼光譜分析 41
3-3-4 太陽光模擬器與IV量測系統 42
第四章 結果與討論 44
4-1 鹼金屬參雜對於CZTSSe薄膜之探討 44
4-1-1 前期研究 44
4-1-2 鹼金屬參雜對於CZTSSe微結構之影響 47
4-1-3 鹼金屬參雜對於元件特性之影響 53
4-1-4 結論 60
4-2 硒化後再硫化對於CZTSSe薄膜之探討 60
4-2-1 純硫化CZTS薄膜微結構與元件特性之前期研究 61
4-2-2 不同溫度再硫化對於CZTSSe微結構之影響 63
4-2-3 硒化後再硫化對於CZTSSe元件效率之影響 68
4-2-4 結論 70
第五章 總結與未來規劃 71
5-1 總結 71
5-2 未來規劃 71

參考文獻 參考書目
[1] W. Shockley and H. J. Queisser, "Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells," Journal of Applied Physics, vol. 32, pp. 510-519, 1961.
[2] Q. Guo, H. W. Hillhouse, and R. Agrawal, "Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells," Journal of the American Chemical Society, vol. 131, pp. 11672-11673, 2009/08/26 2009.
[3] C. Czeslik, H. Seemann, and R. Winter, Basiswissen Physikalische Chemie: Springer, 2010.
[4] M. T. Winkler, W. Wang, O. Gunawan, H. J. Hovel, T. K. Todorov, and D. B. Mitzi, "Optical designs that improve the efficiency of Cu 2 ZnSn (S, Se) 4 solar cells," Energy & Environmental Science, vol. 7, pp. 1029-1036, 2014.
[5] S. Chen, X. G. Gong, A. Walsh, and S.-H. Wei, "Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and ${ ext{I-III-VI}}_{2}$ compounds," Physical Review B, vol. 79, p. 165211, 04/30/ 2009.
[6] S. Chen, X. G. Gong, A. Walsh, and S.-H. Wei, "Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4," Applied Physics Letters, vol. 96, p. 021902, 2010.
[7] A. Walsh, S. Chen, S.-H. Wei, and X.-G. Gong, "Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4," Advanced Energy Materials, vol. 2, pp. 400-409, 2012.
[8] S. Chen, A. Walsh, X.-G. Gong, and S.-H. Wei, "Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers," Advanced Materials, vol. 25, pp. 1522-1539, 2013.
[9] Z. Tang, Y. Nukui, K. Kosaka, N. Ashida, H. Uegaki, and T. Minemoto, "Reduction of secondary phases in Cu2SnSe3 absorbers for solar cell application," Journal of Alloys and Compounds, vol. 608, pp. 213-219, 2014/09/25/ 2014.
[10] T. Tanaka, T. Sueishi, K. Saito, Q. Guo, M. Nishio, K. M. Yu, et al., "Existence and removal of Cu2Se second phase in coevaporated Cu2ZnSnSe4 thin films," Journal of Applied Physics, vol. 111, p. 053522, 2012.
[11] A. Guchhait, Z. Su, Y. F. Tay, S. Shukla, W. Li, S. W. Leow, et al., "Enhancement of Open-Circuit Voltage of Solution-Processed Cu2ZnSnS4 Solar Cells with 7.2% Efficiency by Incorporation of Silver," ACS Energy Letters, vol. 1, pp. 1256-1261, 2016/12/09 2016.
[12] S. Temgoua, R. Bodeux, N. Naghavi, and S. Delbos, "Effects of SnSe2 secondary phases on the efficiency of Cu2ZnSn(Sx,Se1 − x)4 based solar cells," Thin Solid Films, vol. 582, pp. 215-219, 5/1/ 2015.
[13] A. Fairbrother, X. Fontané, V. Izquierdo-Roca, M. Placidi, D. Sylla, M. Espindola-Rodriguez, et al., "Secondary phase formation in Zn-rich Cu2ZnSnSe4-based solar cells annealed in low pressure and temperature conditions," Progress in Photovoltaics: Research and Applications, vol. 22, pp. 479-487, 2014.
[14] W.-C. Hsu, I. Repins, C. Beall, C. DeHart, G. Teeter, B. To, et al., "The effect of Zn excess on kesterite solar cells," Solar Energy Materials and Solar Cells, vol. 113, pp. 160-164, 6// 2013.
[15] J. T. Wätjen, J. Engman, M. Edoff, and C. Platzer-Björkman, "Direct evidence of current blocking by ZnSe in Cu2ZnSnSe4 solar cells," Applied Physics Letters, vol. 100, p. 173510, 2012.
[16] J. J. Scragg, "Studies of Cu2ZnSnS4 films prepared by sulfurisation of electrodeposited precursors," Doctor of Philosophy (PhD), University of Bath, 2010.
[17] I. D. Olekseyuk, I. V. Dudchak, and L. V. Piskach, "Phase equilibria in the Cu2S–ZnS–SnS2 system," Journal of Alloys and Compounds, vol. 368, pp. 135-143, 4/14/ 2004.
[18] H. Katagiri, K. Jimbo, K. Moriya, and K. Tsuchida, "Solar cell without environmental pollution by using CZTS thin film," in Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on, 2003, pp. 2874-2879.
[19] C. M. Sutter-Fella, J. A. Stückelberger, H. Hagendorfer, F. La Mattina, L. Kranz, S. Nishiwaki, et al., "Sodium assisted sintering of chalcogenides and its application to solution processed Cu2ZnSn (S, Se) 4 thin film solar cells," Chemistry of Materials, vol. 26, pp. 1420-1425, 2014.
[20] Y. Yang, X. Kang, L. Huang, S. Wei, and D. Pan, "Facile and Low-Cost Sodium-Doping Method for High-Efficiency Cu2ZnSnSe4 Thin Film Solar Cells," The Journal of Physical Chemistry C, vol. 119, pp. 22797-22802, 2015/10/08 2015.
[21] H. Xin, S. M. Vorpahl, A. D. Collord, I. L. Braly, A. R. Uhl, B. W. Krueger, et al., "Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S,Se)4 and increases photovoltaic efficiency," Physical Chemistry Chemical Physics, vol. 17, pp. 23859-23866, 2015.
[22] Y.-T. Hsieh, Q. Han, C. Jiang, T.-B. Song, H. Chen, L. Meng, et al., "Efficiency Enhancement of Cu2ZnSn(S,Se)4 Solar Cells via Alkali Metals Doping," Advanced Energy Materials, vol. 6, pp. 1502386-n/a, 2016.
[23] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, et al., "New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%," Prog Photovolt: Res Appl, vol. 19, 2011.
[24] S. C. Riha, B. A. Parkinson, and A. L. Prieto, "Compositionally Tunable Cu2ZnSn(S1–xSex)4 Nanocrystals: Probing the Effect of Se-Inclusion in Mixed Chalcogenide Thin Films," Journal of the American Chemical Society, vol. 133, pp. 15272-15275, 2011/10/05 2011.
[25] K. Ito and T. Nakazawa, "Electrical and optical properties of stannite-type quaternary semiconductor thin films," Japanese Journal of Applied Physics, vol. 27, p. 2094, 1988.
[26] H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, and T. Yokota, "Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E B evaporated precursors," Solar Energy Materials and Solar Cells, vol. 49, pp. 407-414, 1997.
[27] T. M. Friedlmeier, N. Wieser, T. Walter, H. Dittrich, and H. Schock, "Heterojunctions based on Cu2ZnSnS4 and Cu2ZnSnSe4 thin films," in 14th European PVSEC, 1997.
[28] J.-S. Seol, S.-Y. Lee, J.-C. Lee, H.-D. Nam, and K.-H. Kim, "Electrical and optical properties of Cu 2 ZnSnS 4 thin films prepared by rf magnetron sputtering process," Solar Energy Materials and Solar Cells, vol. 75, pp. 155-162, 2003.
[29] K. Tanaka, N. Moritake, and H. Uchiki, "Preparation of Cu2ZnSnS4 thin films by sulfurizing sol–gel deposited precursors," Solar Energy Materials and Solar Cells, vol. 91, pp. 1199-1201, 2007.
[30] K. Tanaka, Y. Fukui, N. Moritake, and H. Uchiki, "Chemical composition dependence of morphological and optical properties of Cu 2 ZnSnS 4 thin films deposited by sol–gel sulfurization and Cu 2 ZnSnS 4 thin film solar cell efficiency," Solar Energy Materials and Solar Cells, vol. 95, pp. 838-842, 2011.
[31] K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, "Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing," Solar Energy Materials and Solar Cells, vol. 93, pp. 583-587, 2009.
[32] K. Moriya, K. Tanaka, and H. Uchiki, "Fabrication of Cu2ZnSnS4 thin-film solar cell prepared by pulsed laser deposition," Japanese Journal of Applied Physics, vol. 46, p. 5780, 2007.
[33] J. J. Scragg, P. J. Dale, L. M. Peter, G. Zoppi, and I. Forbes, "New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material," physica status solidi (b), vol. 245, pp. 1772-1778, 2008.
[34] H. Katagiri, "Survey of development of CZTS-based thin film solar cells," in Photonics (ICP), 2012 IEEE 3rd International Conference on, 2012, pp. 345-349.
[35] G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, and L. M. Peter, "Cu2ZnSnSe4 thin film solar cells produced by selenization of magnetron sputtered precursors," Prog Photovolt: Res Appl, vol. 17, 2009.
[36] T. Kato, H. Hiroi, N. Sakai, and H. Sugimoto, "Buffer/absorber interface study on Cu2ZnSnS4 and Cu2ZnSnSe4 based solar cells: band alignment and its impact on the solar cell performance," in 28th European Photovoltaic Solar Energy Conference, 2013, pp. 2125-2127.
[37] Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov, T. Gokmen, Y. Virgus, et al., "Cu2ZnSnSe4 Thin-Film Solar Cells by Thermal Co-evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length," Advanced Energy Materials, vol. 5, pp. 1401372-n/a, 2015.
[38] W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, et al., "Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency," Advanced Energy Materials, vol. 4, pp. 1301465-n/a, 2014.
[39] S. Oueslati, G. Brammertz, M. Buffiere, H. ElAnzeery, O. Touayar, C. Köble, et al., "Physical and electrical characterization of high-performance Cu 2 ZnSnSe 4 based thin film solar cells," Thin Solid Films, vol. 582, pp. 224-228, 2015.
[40] P. A. Fernandes, P. M. P. Salomé, and A. F. da Cunha, "Growth and Raman scattering characterization of Cu2ZnSnS4 thin films," Thin Solid Films, vol. 517, pp. 2519-2523, 2009/02/02/ 2009.
[41] A. Fairbrother, E. García-Hemme, V. Izquierdo-Roca, X. Fontané, F. A. Pulgarín-Agudelo, O. Vigil-Galán, et al., "Development of a Selective Chemical Etch To Improve the Conversion Efficiency of Zn-Rich Cu2ZnSnS4 Solar Cells," Journal of the American Chemical Society, vol. 134, pp. 8018-8021, 2012/05/16 2012.
[42] M. Noritaka, H. Myo Than, S. Kazuki, I. Shota, H. Yoshio, and I. Kentaro, "Cu 2 ZnSn(S x Se 1- x ) 4 Thin-Film Solar Cells Utilizing Simultaneous Reaction of a Metallic Precursor with Elemental Sulfur and Selenium Vapor Sources," Applied Physics Express, vol. 5, p. 081201, 2012.
[43] A.-J. Cheng, M. Manno, A. Khare, C. Leighton, S. A. Campbell, and E. S. Aydil, "Imaging and phase identification of Cu2ZnSnS4 thin films using confocal Raman spectroscopy," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 29, p. 051203, 2011.
[44] L. Vauche, L. Risch, M. Arasimowicz, Y. Sánchez, E. Saucedo, M. Pasquinelli, et al., "Detrimental effect of Sn-rich secondary phases on Cu2ZnSnSe4 based solar cells," Journal of Renewable and Sustainable Energy, vol. 8, p. 033502, 2016.
[45] S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, et al., "Determination of band gap energy (E g) of Cu 2 ZnSnSe 4 thin films: on the discrepancies of reported band gap values," Applied Physics Letters, vol. 97, p. 021905, 2010.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-11-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-11-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw