進階搜尋


 
系統識別號 U0026-0910201813560900
論文名稱(中文) 利用伽馬射線和自發性射線的井測資料建立虛擬合成震波圖
論文名稱(英文) Generation of Pseudo-Synthetic Seismograms from Spontaneous Potential and Gamma-ray Well Logs
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 107
學期 1
出版年 107
研究生(中文) 亞南
研究生(英文) Muhammad Adnan Quadir
電子信箱 adnanq5@gmail.com
學號 L48027012
學位類別 博士
語文別 英文
論文頁數 145頁
口試委員 口試委員-楊耿明
口試委員-徐國錦
口試委員-郭明錦
召集委員-李元希
口試委員-劉興昌
指導教授-饒瑞鈞
共同指導教授-陸喬克
中文關鍵字 組合井測資料  伽馬射線虛擬聲波  SP虛擬聲波  伽馬射線井測修正  放射性井測資料  富含有機質的頁岩 
英文關鍵字 Combined log  gamma-ray pseudo-sonic  SP pseudo-sonic  gamma-ray log correction  radioactive log  organic rich shale 
學科別分類
中文摘要 常規合成震波圖(conventional synthetic seismogram; CSS)主要以聲波和井測密度組合而成,經常用於石油和天然氣探勘。另外,也可以配合伽馬射線和自然電位井測資料相互交疊構成不同模式來建立虛擬合成震波圖(pseudo-synthetic seismogram,PSS),例如美國堪薩斯州的井測記錄方式。本研究將介紹各種不同的虛擬合成震波圖方式:方法一:井測資料重新編輯;方法二:將速度變化對數曲線納入評估;方法三:透過統計公式將伽馬射線和聲波的異常值(ITT)刪除;方法四:根據極高的伽馬射線數據來校正伽馬射線井測資料;方法五:結合伽馬射線(gamma-ray,GR)和自然電位(self-potential,SP)井測資料產生出的自發性射線(spontaneous ray,SR)對數法;及方法六:使用類似於方法三的統計公式來刪除異常值,但是僅限於伽馬射線井測資料。將以上述方法處理後的數值配合聲波(ITT)交叉繪製的線性變換趨勢來產生新的虛擬合成震波測圖。本研究將上述六種方式所生成虛擬合成聲波井測資料聲波(ITT)進行比較,前四種方式主要以人工判別為基礎,後兩種方式則是利用統計學的方法來進行常規和虛擬聲波井測資料的比較。例如在方法五中使用了Nash-Sutcliffe efficiency(NSE)公式,並在方法五方法六中使用Pearson product-moment correlation coefficient (PCC)來比較虛擬聲波和聲波(ITT)(Quadir et al. 2018a; Quadir et al. 2018b)。三孔井式的虛擬聲波井測技術的可接受值範圍為78%至83%(方法五)。本研究使用其中單孔井作為盲測試孔,其效果顯著。藉由低密度校正複合PS(SR)和常規聲波(CS)所得到的Pearson product-moment correlation coefficient(PCC)相關係數可達86%(方法五)。為了驗證方法六均的適用性,本研究在Hugoton Embayment(HE),Central Kansas Uplift(CKU),Sedgwick Basin(SGB),Salina Basin(SB),Forest City Basin(FCB)和Nemaha Uplift(NU)等鑽井進行測試。其結果顯示PS與常規聲波(ITT)之間的相關係數分別為0.75,0.92,0.86,0.91,0.77和0.70。此外,常規合成震波圖(CSS)與來自每個區域的盲測試井之虛擬合成震波圖(PSS)的擬合結果良好。本研究提供另類的廉價而直接之替代方法(方法-V)所產生的虛擬合成地震圖來解析區域地震反射,此方法在世界上許多以自發電位和伽馬射線測井為主的碳氫化合物盆地中具有重大意義和應用前景。在部分缺乏聲波測井或聲波測井品質較差的石油和天然氣盆地中,如果對異常值進行了適當處理(方法-6),則GR測井是一種可行的工具並可以創建虛擬聲波測井資料和虛擬合成地震圖。本研究提供了經濟實惠且直觀性的處理技術,主要是利用SP和伽馬射線的測井資料來創建擬合成震波圖,且可以用於在聲波測井數量稀少和具有高壓井伽馬射線導致異常偽速度的測井之石油和天然氣盆地的勘探工作。
英文摘要 The “conventional” synthetic seismogram (CSS) that is used in oil and gas interpretation is generated from sonic and density logs. Alternatively, gamma-ray and spontaneous potential logs can be combined with a density log to create a pseudo-synthetic seismogram (PSS) by using different methods as demonstrated from the logs of wells in Kansas, USA. Herein we introduce several new methods for constructing pseudo-synthetic seismograms by editing (Method-I), by considering major shifts in the velocity log curve (Method-II), by deleting the outliers both from gamma-ray and sonic (ITT) logs by statistical formulas (Method-III), the borehole corrections of gamma-ray logs (Method-IV) (due to extremely high gamma-ray readings), by combining the gamma-ray (GR) and self-potential (SP) logs to produce the spontaneous ray (SR) log (Method-V), and by deleting the outliers by using the statistical formulas resembling Method-III but applied only to the outliers of the gamma-ray log (Method-VI). The values were cross-plotted against the sonic ITT values to determine a linear transform for producing a pseudo-sonic (PS) log and, ultimately, a pseudo-synthetic seismogram. After generating the pseudo-sonic logs, there were several ways to compare the pseudo-sonic with the sonic ITT. The first four methods (Method-I to Method-IV) were compared visually, and the second two were compared statistically between the conventional and pseudo-sonic logs. The Nash-Sutcliffe efficiency (NSE) formula was used in Method-V and the Pearson product-moment correlation coefficient (PCC) was used in Method-V and Method-VI to compare between the pseudo-sonic and the sonic (ITT) (Quadir et al. 2018a; Quadir et al. 2018b). The range for the Nash-Sutcliffe efficiency (NSE) acceptable value for the pseudo-sonic logs of three wells was from 78% to 83% (Method-V). This technique (Method-V) was tested on three wells, one of which was used as a blind test well, with satisfactory results. The Pearson product-moment correlation coefficient (PCC) value between the composite PS (SR) log with low density correction and the conventional sonic (CS) log was 86% (Method-V). To demonstrate a wider-range application of our method (Method-VI), the procedure was applied to wells from the Hugoton Embayment (HE), Central Kansas Uplift (CKU), Sedgwick Basin (SGB), Salina Basin (SB), Forest City Basin (FCB) and Nemaha Uplift (NU). The correlation coefficient between the PS and the conventional sonic (ITT) was 0.75, 0.92, 0.86, 0.91, 0.77 and 0.70, respectively. Also, the match between the resulting conventional synthetic seismogram (CSS) and the pseudo-synthetic seismogram (PSS) from a blind test well for each area was quite good. Because of the common occurrence of spontaneous potential and gamma-ray logs in many of the hydrocarbon basins of the world, this inexpensive and straightforward technique (Method-V) could hold significant promise in areas that are in need of alternate ways to create pseudo-synthetic seismograms for seismic reflection interpretation. Provided the outliers have been properly treated (Method-VI), the GR log is a viable tool for creating pseudo-sonic logs and pseudo-synthetic seismograms for exploration in oil and gas basins where there are few wells with sonic logs or where sonic log quality is poor. The economical and straightforward technique presented here for creating the pseudo-synthetic seismograms from the gamma-ray and SP logs can be useful for exploration in oil and gas basins where there are few wells with sonic logs and where high gamma-ray log may cause anomalous pseudo-velocities.
論文目次 Page
Acknowledgements........................................i
Abstract...............................................ii
摘要...................................................iv
Table of Contents.....................................vii
List of Figures........................................ix
List of Tables........................................xiv
1 Introduction....................................1
1.1 Log Quality and Availability....................4
1.2 Curve Matching..................................5
2 Physical Characteristics Related to Log
Response........................................7
2.1 Lithology and Shale Content.....................7
2.2 Mechanical Strength.............................8
2.3 Porosity........................................9
2.4 Fluid Saturation...............................10
3 Scope and Objectives...........................11
3.1 Data Requirements..............................12
3.2 General Subsurface Geologic Settings of Six
Structural Basins/Uplifts of Kansas............12
3.2.1 Hugoton Embayment..............................12
3.2.2 Central Kansas Uplift..........................13
3.2.3 Salina Basin and Sedgwick Basin................14
3.2.4 Nemaha Anticline...............................15
3.2.5 Forest City Basin..............................15
3.3 Software Requirements..........................18
4 Basic Theory for Generating Synthetic
Seismograms...................................19
5 Strengths and Limitations of Using Gamma-ray Logs
for Creating Pseudo-synthetic Seismograms......21
6 Methodology....................................23
6.1 Method-I: Editing Gamma-ray log data...........23
6.2 Method-II: Editing the Gamma-ray Log and Major
Shifts of velocity Trends......................27
6.3 Method-III: Correcting the Gamma-ray and Sonic
(ITT) Logs by Box-and-Whisker Plot.............32
6.4 Method-IV: Correcting the Gamma-ray Log for
Borehole Effects...............................39
6.5 Method-V: PSS from the Spontaneous-Ray Log.....46
6.6 Method-VI: PSS from the Highly Radioactive
Formations.....................................82
7 Results.......................................104
8 Discussion....................................113
9 Conclusion....................................121
10 Summary.......................................124
11 References....................................125
12 Appendix......................................138
參考文獻 1. Adcock, S. (1993). In search of the well tie: what if we don’t have a sonic log? The Leading Edge, 12(12), 1161–1164.
2. Adeoti, N. L., Onyekachi, N., Olatinsu, O., Fatoba, J., & Bello, M. (2013). Static reservoir modeling using well log and 3-D seismic data in a KN field, offshore Niger Delta, Nigeria. International Journal of Geosciences, 5(1), 93–106.
3. Adler, F.J., Caplan, W.M., Carlson, M.P., Goebel, E.W., Henslee, H.T., Hicks, C., Larson, T.G., Mccracken, M.H., Parker, M.C., Rascoe, B., JR., Schramm, M.W., JR., & Wells, J.S. (1971). Future petroleum provinces of the mid-continent, region 7, Future Petroleum Provinces of the United States—Their Geology and Potential, American Association of Petroleum Geologists Bulletin, 1 & 2, 985-1042.
4. Akinyokun, O. C., Enikanselu, P. A., Adeyemo, A. B., & Adesida, A. (2009). Well log interpretation model for the determination of lithology and fluid contents. The Pacific Journal of Science and Technology, 10(1), 507–517.
5. Asquith, G., & Gibson, C. (1982). Basic well log analysis for geologists (p. 216). Methods in Exploration Series, No. 3. The American Association of Petroleum Geologists, Tulsa, Oklahoma, USA.
6. Asquith, G., & Krygowski, D. (2004). Basic well log analysis (p. 244). Methods in Exploration Series, No. 16. The American Association of Petroleum Geologists, Tulsa, Oklahoma, USA.
7. Atchley, S. C., Ball, N. H., & Hunt, L. E. (2009). Reservoir characterization and facies prediction within the Late Cretaceous Doe Creek Member, Valhalla field, west-central Alberta, Canada. American Association of Petroleum Geologists Bulletin, 94, 25.
8. Ball, M.M., Henry, M.E, & Frezon, S.E. (1935). Petroleum Geology of the Anadarko Basin Region, Province (115), Kansas, Oklahoma, and Texas. U.S. Geological Survey, Denver Federal Center, Box 25046, Denver, CO 80225.
9. Barwick, J.S. (1928). The Salina Basin of North-Central Kansas. American Association of Petroleum Geologists Bulletin, 12(2), 177-199.
10. Becquey, M., Lavergne, M., & Willm, C. (1979). Acoustic impedance logs computed from seismic traces. Geophysics, 44(9), 1485–1501.
11. BjØrlykke, K., (2015). Unconventional hydrocarbons: oil shales, heavy oil, tar sands, shale gas and gas hydrates. In BjØrlykke, K. (Ed.), Petroleum Geoscience (pp. 581–590). Berlin: Springer.
12. Bluman, A. G. (2001). Elementary statistics (p. 757). New York: McGraw-Hill.
13. Bunker, B.J. (1981). Phanerozoic structural development in the area of the Forest City Basin, southwestern IOWA (A Brief Overview). IOWA Geological Survey, 129 north Capital street, Iowa city, Iowa 52242, 42-61.
14. Branisa, F. (1974). Filtering of well-log curves. Geophysics, 39(4), 545–549.
15. Burch, D. (2002). Sonic logs need trouble shooting (p. 4). Geophysical Corner. The American Association of Petroleum Geologists, Tulsa, Oklahoma, USA.
16. Chang, M. H., Chen, F., & Straughan, B. (2006). Instability of Poiseuille flow in a fluid overlying a porous layer. Journal of Fluid Mechanics, 564, 287–303.
17. Charpentier, R.R.. 1995). Forest City Basin Province (056), in Gautier, D.L., Dolton, G.L., Takahashi, K.I., and Varnes, K.L., eds., 1995 National assessment of United States oil and gas resources—Results, 31 methodology, and supporting data: U.S. Geological Survey Digital Data Series DDS–30, 8 p., release 2, [CD-ROM], http://certmapper.cr.usgs.gov/data/noga95/prov56/text/prov56.pdf.
18. Chatterjee, R., & Paul, S. (2012). Classification of coal seams for coal bed methane exploitation in central part of Jharia coalfield, India—A statistical approach. Fuel, 111, 20–29. https://doi.org/ 10.1016/j.fuel.2013.04.007.
19. Cline, W.M. (1989). Measured logs vs. calculated logs for seismic interpretation. Oil and Gas Journal, 87, (44), 52-56.
20. Close, D., Cho, D., Horn, F., & Edmundson, H. (2009). The sound of sonic. A historical perspective and introduction to acoustic logging. Canadian Society of Exploration Geophysics Recorder, 34(05), 35–43.
21. Cluff, S.G., & Cluff, R.M. (2004). Petrophysics of the Lance Sandstone reservoirs in Jonah Field, Sublette County, Wyoming. In J.W. Robinson., & K.W. Shanley (Eds.), case study of a giant tight-gas fluvial reservoir (pp. 215-241). American Association of Petroleum Geologists, Studies in Geology 52 and Rocky Mountain, Association of Geologists Guidebook.
22. Crain, E.R. (2000). Crain’s petrophysical handbook. E R (Ross) Crain. P. Eng. https://www.spec2000.net/00-resume.htm.
23. Davis, J., Johnson, R., Boniol, D., & Rupert, F. (2001). Guidebook to the correlation of geological well logs within the ST. Johns River water management district (p. 114). Florida: Florida Geological Survey Special Publication No. 50, published in cooperation with the St. Johns River Water Management District, Palatka, Florida, USA.
24. Dennison, A. T. (1960). An introduction to synthetic seismogram techniques. Geophysical Prospecting, 8(2), 231–241.
25. Dræge, A., Jakobsen, M., & Johansen, T. A. (2006). Rock physics modeling of shale digenesis. Petroleum Geoscience, 12(1), 49-57.
26. Doll, H. G. (1948). The S.P log. theoretical analysis and principles of interpretation New York. American Institute of Mining and Metallurgical Engineers, 11, 146–185.
27. Dolton, G.L. & Finn, T.M. (1989). Petroleum Geology of the Nemaha Uplift, Central Mid-Continent, U.S. Geological Survey, MS 940, Box 25046, Denver Federal Center, Denver, CO 80225.
28. Doveton, A.H. (1994). The gamma-ray log. American Association of Petroleum Geologists, the Society of Sedimentary Geology (SEPM), 33-35.
29. Durschner, H. (1958). Synthetic seismograms from continuous velocity logs. Geophysical Prospecting, 6(3), 272–284.
30. Ewing, T. E. (1997). Synthetic helps spot the target (p. 15). Geophysical Corner. The American Association of Petroleum Geologists, Tulsa, Oklahoma, USA.
31. Explorable.com. (2009). Linear regression analysis. https:// explorable.com/linear-regression-analysis. Accessed 8 Jan 2018.
32. Faust, L. Y. (1951). Seismic velocity as a function of depth and geologic time. Geophysics, 16(2), 192–206.
33. Faust, L. Y. (1953). A velocity function including lithological variation. Geophysics, 18(2), 271–288.
34. Fassett, J.E., & Hinds, J.S. (1971). Geology and fuel resources of the Fruitland Formation and Kirtland Shale of the San Juan Basin, New Mexico and Colorado. USGS Professional Paper, United States Government Printing Office, pp. 676.
35. Gardner, J.S. & Dumanoir, J.L. (1980). LithoDensity* Log Interpretation. In Society of petrophysicists and well-log analysts 21st annual logging symposium, Lafayette, Louisiana, 1–23 pp.
36. Gardner, G. H. F., Gardner, L. W., & Gregory, A. R. (1974). Formation velocity and density-the diagnostic basis for stratigraphic traps. Geophysics, 39(6), 770–780.
37. Ghosh, S., Chatterjee, R., Paul, S., & Shanker, P. (2014). Designing of plug-in for estimation of coal proximate parameters using statistical analysis and coal seam correlation. Fuel, 134(2014), 63–73.
38. Ghosh, S., Chatterjee, R., & Shanker, P. (2016). Estimation of ash, moisture content and detection of coal lithofacies from well logs using regression and artificial neural network modelling. Fuel, 177, 279–287.
39. Guyod, H., & Shane, L.E. (1969). Geophysical well logging: Introduction to geophysical well logging-acoustical logging. Hubert Guyod (vol. 1, p. 256).
40. Hearst, J. R., Nelson, P. H., & Paillet, F. L. (2000). Well logging for physical properties. A handbook for geophysicists, geologists, and engineers (2nd ed., p. 492). West Sussex: Wiley.
41. Higley, D. K., (1995). Cambridge Arch/Central Kansas Uplift Province (053), in Gautier, D. L., Dolton, G.L., Takahashi, K.I., and Varnes, K.L., ed., 1995 National Assessment of United States oil and gas resources--Results, methodology, and supporting data: U.S. Geological Survey Digital Data Series DDS-30, Release 2, one CD-ROM.
Available at: http://certmapper.cr.usgs.gov/data/noga95/prov53/text/prov53.pdf
42. Hinkle, D. E., Wiersma, W., & Jurs, S. G. (2003). Applied statistics for the behavioral sciences (p. 756). Boston: Houghton Mifflin.
43. Japsen, P., Mukerji, T., & Mavko, G. (2007). Constraints on velocity-depth trends from rock physics Models. Geophysical Prospecting, 55(2), 135-154.
44. Kelly, T.E., & Merriam D.F. (1964). Structural Development of the Sedgwick Basin, South-Central Kansas. Transactions of the Kansas Academy of Science (1903-), 67(1), 111-125.
45. Kenter, J.A.M., & Stafleu, J. (1994). Synthetic seismograms at Site 866; origin of reflections and implications for recognizing the limestone/basalt transition in Cretaceous Mid-Pacific guyots. In E.L. Winterer., W.W. Sager., J.V., Firth., & J.M. Sinton (Eds) 1995 Proceedings of the Ocean Drilling Program, Scientific Results (vol.143, pp. 305-315).
46. Koch, G. G. (1985). A basic demonstration of the [− 1, 1] range for the correlation coefficient. The American Statistician, 39(3), 201–202.
47. Koester, E.A. (1935). Geology of Central Kansas Uplift. American Association of Petroleum Geologists Bulletin, Wichita, Kansas, 19(10), 1405-1426.
48. Kung, S. L., Lewis, C., & Wu, J. C. (2013). A technique for improving pseudo-synthetic seismograms generated from neutron logs in gas-saturated clastic rocks. Journal of Geophysics and Engineering, 10(3), 035015 (10 pp.).
49. Kung, S. L., Lewis, C., & Wu, J. C. (2014). A resistivity log-derived and gas-corrected pseudo-synthetic seismogram. application to the Fanpokeng Gas Field of northwestern Taiwan. New Zealand Journal of Geology and Geophysics, 57(1), 21–31.
50. Lama, R. D., & Vutukuri, V. S. (1978). Handbook on mechanical properties of rocks (p. 515). Switzerland: Trans Tech Publications.
51. Larner, K.L., Matekar, E.J., & Wu, C. (1973). Amplitude. its information content, in Lithology and direct detection of hydrocarbons using geophysical methods. In Symposium of the Geophysical Society of Houston (pp. 17–47).
52. Lavergne, M. (1975). Pseudo-diagraphies de vitesses en offshore profound. Geophysical Prospecting, 23(4), 695–711.
53. Lavergne, M., & Willm, C. (1977). Inversion of seismograms and pseudo velocity logs. Geophysical Prospecting, 25(2), 231–250.
54. Leetaru, H.E. (1990). Application of old electric logs in the analysis of Aux Vases sandstone (Mississippian) reservoir in Illinois. Ilinois State Geological Survey, Department of Energy and Natural Resources, Illinois Petroleum, vol. 134, pp. 21.
55. Lindseth, R.O. (1979). Synthetic sonic logs-a process for stratigraphic interpretation. Geophysics, 44(1), 3–26.
56. Lindsey, J. P., & Craft, C. I. (1973). How hydrocarbon reserves are estimated from seismic data. World Oil, 177, 23–25.
57. Laongsakul, P., & Dürrast, H. (2011). Characterization of reservoir fractures using conventional geophysical logging. Songklanakarin Journal of Science Technology, 33 (2), 237-246.
58. Lubanzadio, M., Goulty, N.R. & Swarbrick, R.E. 2006. The dependence of sonic velocity on effective stress in North Sea Mesozoic mudstones. Marine and Petroleum Geology, 23(6), 647-653.
59. Luning S., Craig J., Loydell. K., Storch P. & FitchesI W. R. (2000). Lowermost Silurian ‘hot shales’ in North Africa and Arabia: regional distribution and depositional model. Earth Science Reviews 49(1), 121-200.
60. Luning, S., & Kolonic, S. (2003). Uranium spectral gamma-ray response as a proxy for organic richness in black shales: applicability and limitations. Journal of Petroleum Geology, 26(2), 153-174.
61. Maher, J. C., & Collins, J. B. (1948). Hugoton Embayment of Anadarko Basin in southwestern Kansas, southeastern Colorado, and Oklahoma Panhandle. American Association of Petroleum Geologists Bulletin, Tulsa, Oklahoma, 32 (5), 813-816.
62. Merriam, D.F. (1963). The geologic history of Kansas. Kansas Geological Survey Bulletin 162, p. 1-317.
63. Meyer, B.L., & Nederlof, M.H. (1984). Identification of source rocks on wireline logs by density/ resistivity and sonic transit time/resistivity crossplots. American Association of Petroleum Geologists Bulletin, Hague, Netherlands, 68(2), 121-129.
64. Milliotte, C., & Mattha¨i, S. K. (2014). From seismic interpretation to reservoir model. An integrated study accounting for the The Spontaneous Ray Log: A New Aid for Constructing Pseudo-Synthetic Seismograms structural complexity of the Vienna Basin using an unstructured reservoir grid. First Break, 32(5), 95–101.
65. Mitchell, J. (2012). The Anadarko Basin: oil and gas exploration – past, present and future. SM Energy Corporate, Tulsa, Oklahoma. http://ogs.ou.edu/docs/meetings/OGS-workshop-oklahoma_oil_gas_2012-mitchell.pdf.

66. Morgan, L. C. (1932). Central Kansas Uplift. American Association of Petroleum Geologists Bulletin, 16 (5), 483-484.
67. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers, 50(3), 885–900.
68. Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models. Part 1. A discussion of principles. Journal of Hydrology, 10(3), 282–290.
69. Newell, K.D., Watney, W.L., Cheng, S.W.L., & Brownrigg, R.L. (1987). Stratigragraphic and spatial distribution of oil and gas production in Kansas: Kansas Geological Survey, Subsurface Geology Series 9, 86 p.
70. Nissen, S.E., & Watney, W.L. (2003). Detailed mapping of the upper Hutchinson salt and overlying Permian strata beneath Hutchinson Kansas. Kansas Geological Survey, Open-file Report, 66 pp.
71. O’Doherty, R. F., & Anstey, N. A. (1971). Reflections on amplitudes. Geophysical Prospecting, 19(3), 430–458.
72. Passey, Q. R., Creaney, S., Kulla, J. B., Moretti, F. J., & Stroud, J. D. (1990). A Practical model for organic richness from porosity and resistivity logs. AAPG Bulletin, 74(12), 1777–1794.
73. Paul, S., Ali, M., & Chatterjee, R. (2018). Prediction of compressional wave velocity using regression and neural network modeling and estimation of stress orientation in Bokaro Coalfield, India. Pure and Applied Geophysics, 175(1), 375–388.
74. Peterson, R. A., Fillipone, W. R., & Coker, F. B. (1955). The synthesis of seismograms from well log data. Geophysics, 20(3), 516–538.
75. Planke, S. (1993). Rifting and continental breakup. seismic response and crustal evolution with emphasis on the Vøring volcanic margin. PhD Thesis, University of Oslo, Cited by. Planke, S. 1994, Geophysical response of flood basalts from analysis of wireline logs. Ocean Drilling Program Site 642, Vøring volcanic margin. Journal of Geophysical Research, 99(B5), 9279-9296.
76. Prensky, S.E. (1995). Salina Basin province and Sedgwick Basin province. Kansas Geological Survey, Digital Petroleum Atlas.
http://www.kgs.ku.edu/DPA/NMC/Prov/sedgwick.html.
77. Quadir, A., Lewis, C., & Rau, R-J. (2014). Pseudo-synthetic seismograms from gamma ray logs. Geodynamics and Environment in East Asia (GEEA 2014), 12-15 May, Hualien, Taiwan, 9 pp.
78. Quadir, A., Lewis, C., & Rau, R-J. (2015). Correction of highly radioactive shale for the generation of pseudo-synthetic seismograms from gamma ray logs. The 104th Annual Conference and Academic Seminar of the Republic of China Geophysical Society of Republic of China, Earth Sciences in the Digital Era, May 13, Taipei Cultural University, 55 Huagang Road, Shilin District, Taipei, Taiwan.
79. Quadir, A., Lewis, C., & Rau, R-J. (2016). Dealing with highly-radioactive shale and mud weight for generating pseudo-synthetic seismograms from gamma-ray logs. 2016 Taiwan Geosciences Assembly, May 16-20, Nangang Exhibition Center, Taipei, Taiwan. 128pp.
80. Quadir, A., Lewis, C., & Rau, R-J. (2018a). The spontaneous ray log: a new aid for constructing pseudo-synthetic seismograms. Pure and Applied Geophysics, 28 pp. https://doi.org/10.1007/s00024-018-1797-x.
81. Quadir, A., Lewis, C., & Rau, R-J. (2018b). The generation of pseudo-synthetic seismograms from Gamma-ray Well Logs of Highly-Radioactive Formations. Pure and Applied Geophysics, 21 pp. https://doi.org/10.1007/s00024-018-1979-6
82. Quartero, E. (2014). Gamma ray normalization and regional fluvial architecture: the Paleocene Paskapoo Formation, Alberta. Master’s Thesis, University of Calgary. https://prism.ucalgary.ca/bitstream/handle/11023/1435/ucalgary_2014_erik_quartero.pdf;jsessionid=420A4011C5464A5137E109098F9B8966?sequence=2.
83. Rousseeuw, P.J., Ruts I., & Tukey, J.W. (1999). The Bagplot: A Bivariate Boxplot. The American Statistician, 54(4), 382-387.
84. Rudman, A. J., Whaley, J. F., Blakely, R. F., & Biggs, M. E. (1975). Transformation of resistivity to pseudo-velocity logs. American Association of Petroleum Geologists, 59(7), 1151–1165.
85. Schmoker, J. W., (1981). Determination of organic-matter content of Appalachian Devonian shales from gamma-ray logs, Denver, Colorado. American Association of Petroleum Geologists Bulletin 65(7), 1285-1298.
86. Schoenberger, M., & Levin, F. K. (1979). The effect of subsurface sampling on one dimensional synthetic seismogram. Geophysics, 44(11), 1813–1829.
87. Schlumberger Information Solutions (2004). GeoFrame 4.0.4.1 Synthetics, training and exercise guide, Slumberger.
88. Sheriff, R. E. (1975). Factors affecting seismic amplitudes. Geophysical Prospecting, 23, 125–138.
89. Shier, D. E. (2004). Well log normalization. methods and guidelines. Petrophysics, 45(03), 268–280.
90. Smith, J. H. (2007). A method for calculating pseudo-sonic from e-logs in a clastic geologic setting. Gulf Coast Association of Geological Societies Transactions, 57, 675–678.
91. Sloss, L.L. (1963). Sequences in the cratonic interior of North America. Geological Society of America Bulletin, 74(2), 93-114.
92. Taylor, R. (1990). Interpretation of the correlation coefficient. A basic review. Journal of Diagnostic Medical Sonography, 6(1), 35–39.
93. Tiwary, D.N., Singh, B., Arasu, R.T., Rhaman, M., Saha, P., & Chandra, M. (2004). Travel time modelling using gamma-ray and resistivity log in sand shale sequence of Gandhar field. In 5th conference and exposition on petroleum geophysics, Hyderabad, India, pp. 146–151.
94. Tukey, J.W. (1977). Exploratory Data Analysis (p. 689). United Kingdom: Addison-Wesley.
95. Whittaker, S.D., Sharma, R., Hallau, D., Lewis, J.P., & Cluff, R.M. (2010). Characterization of a slim-hole gamma-ray sonde for potash exploration applications in a simple test pit environment. In 23rd EEGS symposium of the application of geophysics to engineering and environmental problems, Borehole Geophysics, Expanded Abstract, Denver, 26 pp.
96. Wittick, T. (1992). Synthetic seismograms the bridge between seismic and log data (p. 47). The American Association of Petroleum Geologists, Abilene Geological Society, Texas, USA.
97. Wood (Jr.), G.H., Kehn, T.M., Carter, M.D. & Culbertson, W.C. (2003). Coal Resource Classification System of the U.S. Geological Survey. Geological Survey Circular 891, Denver, 65 pp.
98. Zhang, X.-L., Feng, Q., Sun, P., & Li, W. (2010). Characteristics of high-gamma-ray sandstone reservoirs for Yanchang Formation in Ordos Basin. Chinese Journal of Geophysics, 53(1), 154–163.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-10-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-10-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw