進階搜尋


下載電子全文  
系統識別號 U0026-0909201510594900
論文名稱(中文) 應用限制理論與軟性系統動態學以建置商用建築物無線感測節能系統
論文名稱(英文) Applying Theory of Constraints and Soft System Dynamics methodology in Constructing the Commercial Building Wireless Sensor Network Energy-Saving Management System
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系
系所名稱(英) Department of Industrial and Information Management
學年度 103
學期 2
出版年 104
研究生(中文) 傅翰祺
研究生(英文) Han-Chi Fu
學號 R38951109
學位類別 博士
語文別 中文
論文頁數 98頁
口試委員 指導教授-呂執中
口試委員-彭泉
口試委員-王逸琳
口試委員-張秀雲
口試委員-林耀欽
口試委員-謝昆霖
中文關鍵字 限制理論邏輯樹  軟性系統動態學  無線感測網路  建築節能系統 
英文關鍵字 TOC thinking process  Soft Systems dynamics methodology  Wireless sensor networks  Building energy management system 
學科別分類
中文摘要 能源消耗所排放的溫室氣體,導致地球暖化趨於嚴重,因此該如何有效使用能源,減緩地球暖化,成為各國所關切的議題。其中,在聯合國跨政府氣候變遷小組的報告中顯示,未來推動能源效率最有潛力的目標為住商建築物。因此,如何有效管理建築能源,成為各界著重的目標。無線感測網路(Wireless Sensor Networks, WSNs) 即是眾多建築節能技術之一,其應用可將感測器佈署於建築物內外,即時感測溫度與光線來調節室內的空調及照明系統,被認為可用來協助節省耗能。但由於住商建築多為既有建築,系統實地建置常遭遇佈置線路的困難。且企業主管多因無法得知其具體效益,故不願輕易導入無線感測網路於節能系統。同時對於室內空間舒適度而言,常常需要使用空調來維持人員舒適度,進而造成能源損耗。如何在舒適度與能源節省之間達成平衡點,並結合建築物管理系統來建構完整的能源管理,成為相關人員的首要目標。
為提供建築物能源管理者一系列由分析到導入建置評估的系統導入流程,本研究首先針對建築物能源管理進行分析,藉由限制理論邏輯樹工具,從建築物能源管理相關問題當中歸納出核心問題並依此提出促進方案來改善。接著依此建立WSNs節能管理系統,透過WSNs的特性協助管理者有效且即時掌握能源耗用狀態。並針對所提之促進方案以及相關系統規劃出導入相關策略,以軟性系統動態學為基礎,發展系統化的流程來協助企業進行其系統導入效益評估。最後透過實際案例之導入來驗證本研究所提之WSNs系統與導入流程,並說明應用本研究導入方法之效益。
相較於傳統導入評估由上而下的成本分析之模式,本研究所提出之分析導入流程不僅能深入考量使用者實際使用能源之情境,進而由下而上規劃出詳細的步驟作為導入依循。同時透過整體導入流程建置的過程,管理者能重新審視能源耗用的情況,以利後續制定出與WSN能源系統管理互相搭配的管理準則,使建築物能源管理更有效率。本研究所提之分析導入流程方法,有別於傳統系統設計之方法,以基層使用者意見、管理者目標以及實際情況作為設計依據。透過系統化流程分析方法,將核心問題、欲達成目標以及可能遭遇之阻礙一一條列出,並針對此分別提出解決方案以及達成的里程碑。同時以節能系統動態分析的方式,將原本未結構化的系統導入挑戰,轉換成結構化流程階段來讓管理者依循導入。而其獨特之系統動態模型讓管理者能在導入前,有效掌控系統預期成效以及可能的影響。
英文摘要 The Wireless Sensor Networks (WSNs) could detect environment and transmit the data to the devices via the wireless network. It enables the environment to be smart and creates pervasive and ubiquitous applications, which gives context-aware and scalable service to end users. While there are many researches interested in WSNs system architecture and related protocol stacks with different applications, the implementation issues on energy management problem, which are multifarious and complicated, require a systematical process analysis to assist the manager in identifying the key problems and to evaluating the effectiveness of the new technique adoption.
This study proposes a systematic process to assist enterprises in analyzing problems for energy consumption in buildings and to implement a WSN-based building energy management system, which attempts to improve the shortcomings of existing energy monitoring system. Soft systems dynamics methodology is used in planning the system implementation and in evaluating the possible benefits before implementing WSNs into the buildings. This study also presents three scenarios to demonstrate the functions of the WSN-based building energy management system. The proposed process could be extended to the new applications which include the application of IoT (Internet of Things) to this domain.
論文目次 目錄
摘要 I
Extended Abstract II
目錄 VIII
圖目錄 X
表目錄 XI
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 研究範圍與限制 5
第四節 研究流程與方法 6
第二章 文獻探討 8
第一節 無線感測網路 8
(一)無所不在的電腦運算 8
(二)無線感測網路基本介紹 9
(三)無線感測網路建築應用 11
第二節 建築物能源管理系統 14
(一)BEMS之發展與沿革 14
(二)BEMS之架構 15
(三)國內外BEMS系統發展 17
第三節 限制理論邏輯分析 19
(一)限制理論的源起 19
(二)限制理論思考分析工具 21
(三)限制理論於流程分析之適用性與相關應用 28
第四節 軟性系統動態學 30
第三章 建築物節能系統 33
第一節 研究架構 33
第二節 能源管理分析 34
(一)階段一:現況分析 34
(二)階段二:流程診斷 34
(三)階段三:建置對應計畫 37
第三節 以WSN為基礎之建築能源管理系統 349
(一)系統架構與環境 40
(二)系統設計與功能 42
第四節 節能系統動態分析模式 44
(一)環境分析 46
(二)導入方案 52
(三)效益評估 54
第四章 應用案例與情境說明 56
第一節 能源管理分析 56
(一)階段一:現況分析 56
(二)階段二:流程診斷 58
(三)階段三:建置對應計畫 61
(四)小結 63
第二節 結構化能源管控流程 64
(一)環境分析 64
(二)導入方案 69
(三)效益評估 72
(四)小結 76
第三節 WSN建築節能管理系統與應用成效 77
(一)系統配置說明 77
(二)應用成效 78
(三)小結 85
第五章 研究結論與後續發展 87
第一節 研究結論 87
第一節 後續發展 90
參考文獻 91
附件一 目前著作 i
參考文獻 中文部分:
1. 王玉榮、孔祥雲 (2003) 全面認識約束理論TOC─認識TOC 理論體系. AMT企業資源管理中心.
2. 全國能源會議 (2009) 全國能源會議結論具體行動方案96年成果檢討會議紀錄.
3. 李榮貴 (1992) 限制理論-製造管理的新觀念. 機械工業雜誌.
4. 李榮貴 (1996) 從「目標」一書談限制管理之應用. 限制管理教育發展中心.
5. 何俊德 (2004) 限制理論於TFT-LCD新產品開發專案之應用. 國立交通大學工業工程與管理研究所碩士論文.
6. 京都議訂書 (2005) http://gis2.sinica.edu.tw/epa/kyoto.html.
7. 吳科儀 (2014) 整合思維程序及戰略與戰術樹圖之策略規劃方法. 明新科技大學管理研究所碩士論文
8. 林逸群 (2002) 應用專家系統於中央空調系統之故障診斷. 國立台北科技大學電機工程系碩士論文.
9. 范植賢 (2003) 建築物能源管理診斷專家系統. 國立台北科技大學冷凍與低溫科技研究所碩士論文.
10. 陳文銓 (2004) 以限制理論的思維模式構建封裝產業競爭策略. 國立交通大學工業工程與管理研究所碩士論文.
11. 財團法人台灣綠色生產力基金會 (2006) 2006非製造業能源查核簡報.
12. 財團法人台灣綠色生產力基金會 (2008) 建築能源管理(BEMS)節能手冊.
13. 彭立德 (2007) 建築能源管理系統BEMS分級架構之建構與省能案例分析. 國立中山大學機械與機電工程系碩士論文.
14. 楊書文 (1993) 限制理論邏輯架構與四個問題求解手法之比較研究. 國立交通大學工業工程與管理研究所碩士論文.
15. 楊冠雄 (2007) 台灣地區BEMS標準化之建構與應用分析. 2007 能源與冷凍空調學術研討會.
16. 經濟部能源局 (2007) 我國能源科技發展政策目標及推動現況. 能源科技研究發展白皮書.
17. 經濟部能源局 (2009) 我國能源資通訊產業之發展.
18. 經濟部能源局 (2010) 能源局98年報.
19. 管思齊 (2002) 以限制理論談署立醫院多角化經營. 國立雲林科技大學工業工程與管理研究所碩士論文.
20. 蔡文銘 (2003) 限制理論問題管理模式之研究. 中原大學工業工程研究所碩士論文.
21. 蔡明韋 (2012) 家庭能源管理系統平台開發與設計. 國立臺北科技大學自動化科技研究所碩士論文
22. 蔡坤佑 (2000) 限制理論下建置企業資源規劃系統之關鍵成功因素與導入架構. 國立台灣大學資訊管理研究所碩士論文.
23. 劉怡甫 (2004) 應用限制理論分析企業線上學習機制之個案研究. 天主教輔仁大學管理學研究所在職專班碩士論文.
24. 羅展興 (1993) 應用限制理論探討產業競爭力-以機械零組件產業為例. 國立交通大學工業工程研究所碩士論文.


英文部分:
1. Abdi, M., Hasanzadeh, A., Fani, A.-A., & Poor, S.H.G. (2014) “Exploring the bottleneck of Iran's national innovation system by TOC thinking process,” Technological and Economic Development of Economy, Vol.20 (4), pp.601-623.
2. Alcala, R., Casillas, J., Cordon, O., Gonzalez, A., & Herrera, F. (2005) “A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems,” Engineering Applications of Artificial Intelligence, 18(3), 279-296.
3. Alippi, C., Anastasi, G., Di Francesco, M., & Roveri, M. (2010) “An Adaptive Sampling Algorithm for Effective Energy Management in Wireless Sensor Networks With Energy-Hungry Sensors,” IEEE Transactions On Instrumentation And Measurement, 59(2), 335-344.
4. Al-Sumaiti, A.S. Ahmed, M.H. & Salama, M.M.A. (2014) “Smart Home Activities: A Literature Review,” Electric Power Components and Systems, Vol.42 (3-4), pp.294-305.
5. Arampatzis, T., Lygeros, J., & Manesis, S. (2005) “A survey of applications of wireless sensors and wireless sensor networks,” Proceedings of the IEEE International Symposium on Intelligent Control, 1-2(1), 719-724.
6. ASHRAE (2004) “ASHRAE standard 55: Thermal environment conditions for human occupancy,” ASHRAE: Atlanta.
7. Beaudin, M. & Zareipour, H. (2015) “Home energy management systems: A review of modeling and complexity,” Renewable and Sustainable Energy Reviews, Vol.45, pp.318-335.
8. Boehm, H.-J., & Weiser, M. (1988) “Garbage Collection in an Uncooperative Environment,” Software - Practice and Experience, 18(9), 807-820.
9. Brambley, M. R., Chassin, D. P., Gowri, K., Kammers, B., & Branson, D. J. (2000) “DDC and the Web,” ASHRAE Journal, 42(12), 38-50.
10. Cai, Y. P., Huang, G. H., Lin, Q. G., Nie, X. H., & Tan, Q. (2009) “An optimization-model-based interactive decision support system for regional energy management systems planning under uncertainty,” Expert Systems with Applications, 36(2), 3470-3482.
11. Clarke, J. A., Cockroft, J., Conner, S., Hand, J. W., Kelly, N. J., Moore, R. (2002) “Simulation-assisted control in building energy management systems,” Energy and Buildings, 34(9), 933-940.
12. Dettmer, H. W. (1997) “Goldratt’s Theory of Constraints -A System Approach to Continuous Improvement,” ASQC Quality Press.
13. Dettmer, H. W. (1998) “Breaking the Constraints to World-Class Performance,” ASQ Quality Press.
14. Doukas, H., Patlitzianas, K. D., Iatropoulos, K., & Psarras, J. (2007) “Intelligent building energy management system using rule sets,” Building and Environment, 42(10), 3562-3569.
15. Dounis, A. I., & Caraiscos, C. (2009) “Advanced control systems engineering for energy and comfort management in a building environment-A review,” Renewable & Sustainable Energy Reviews, 13(6-7), 1246-1261.
16. Dounis, A. I., Tiropanis, P., Argiriou, A., & Diamantis, A. (2011) “Intelligent control system for reconciliation of the energy savings with comfort in buildings using soft computing techniques,” Energy and Buildings, 43(1), 66-74.
17. European Commission (2007) Germany-Energy Mix Fact Sheet.
18. Fanger, P. O. (1972) “Thermal comfort,” McGraw-Hill: Atlanta.
19. Goldratt, E. & Cox, J. (1992) “The Goal,” North-River Press,

20. Gorfain, J., & Brunner, C. L. (2005) “The office of future,” ASHRAE Journal, 41(11), 30-35.
21. Han, D. M, & Lim, J. H. (2010) “Smart Home Energy Management System using IEEE 802.15.4 and ZigBee,” IEEE Transactions on Consumer Electronics, 56(3), 1403-1410.
22. Humphrey, M. A., & Nicol, J. F. (2002) “The validation of ISO-PMV for comfort votes in everyday thermal environments,” Energy and Building, 9(34), 667-684.
23. Indraganti, M. (2010) “Behavioural adaptation and the use of environmental controls in summer for thermal comfort in apartments in India,” Energy and Buildings, 42(7), 1019-1025.
24. International Energy Agency (2006a) Energy Policies of IEA Countries - 2006 Review.
25. International Energy Agency (2006b) Energy Technology Prospects.
26. International Energy Agency (2006c) World Energy Outlook 2006.
27. International Energy Agency (2007) Medium-Term Oil Market Report.
28. IPCC. (2007) Climate Change 2007: Mitigation of Climate Change. WGIII contribution to the IPCC Fourth Assessment Report.
29. ISO (1995) “Moderate thermal environments - Determination of the PMV and PPD indices and specification of the conditions for thermal comfort,” ISO Standard 7730. Geneva: International Standardization Organization.
30. Kahn, J. M., Katz, R. H., & Pister, K. S. J. (1999) “Next century challenges: Mobile networking for smart dust.” Paper presented at the Proc. of the ACM MobiCom' 99.


31. Kaldoft, S., & Gruber, P. (2002) “Practical experiences from developing and implementing an expert system diagnostic tool,” ASHRAE Transactions, 108(1), 826-840.
32. Kazmi, A.H., O'grady, M.J., Delaney, D.T., Ruzzelli, A.G., & O'hare, G.N.P. (2014) “A Review of Wireless-Sensor-Network-Enabled Building Energy Management Systems,” ACM Transactions on Sensor Networks, Vol.10 (4), Article 66.
33. Khan, A.A., Razzaq, S., Khan, A., Khursheed, F. & Owais (2015) “HEMSs and enabled demand response in electricity market: An overview,” Renewable and Sustainable Energy Reviews, Vol.42, pp.773-785.
34. Kintner-Meyer, M., & Brambley, M. R. (2004) “Are wireless sensors and controls ready for the building automation industry? Selected case studies and technology development activities,” Pacific Northwest National Laboratory. U.S. Department of Energy by Battelle Memorial Institute.
35. Ko, H. S., Lim, H., Jeong, W., & Nof, S. Y. (2010) “A statistical analysis of interference and effective deployment strategies for facility-specific wireless sensor networks,” Computers in Industry, 61(5), 472-479.
36. Lee, S., Kwon, B., & Lee, S. (2014) “Joint Energy Management System of Electric Supply and Demand in Houses and Buildings,” IEEE Transactions on Power Systems, Vol.29 (6), pp.2804-2812.
37. Li, M., & Lin, H.-J. (2015) “Design and Implementation of Smart Home Control Systems Based on Wireless Sensor Networks and Power Line Communications,” IEEE Transactions on Industrial Electronics, Vol.62 (7), pp.4430-4442.


38. Marzouk, M., & Abdelaty, A. (2014) “Monitoring thermal comfort in subways using building information modeling,” Energy and Buildings, Vol.84, pp.252-257.
39. McIntyre, J., & Pradhan, M. (2003) “A systemic approach to addressing the complexity of energy problems,” Systemic Practice and Action Research, 16(3), 213-223.
40. McMullen, T. B. (1998) “Introduction to the Theory of Constraints Management System,” St. Lucie Press/APICS series on constraints management.
41. Meyers, S., Mills, E., Chen, A., & Demsetz, L. (1996) “Building data visualization for diagnostics,” Ashrae Journal-American Society of Heating Refrigerating and Air-Conditioning Engineers, 38(6), 63-71.
42. Mullen, D.T. Keane, M.M., Geron, M., & Monaghan R.F.D. (2015) “Automatic extraction of reduced-order models from CFD simulations for building energy modeling,” Energy and Buildings, Vol.99, pp.313-326.
43. Ok, C. S., Lee, S., Mitra, P., & Kumara, S. (2009) “Distributed energy balanced routing for wireless sensor networks,” Computers & Industrial Engineering, 57(1), 125-135.
44. Papantoniou, S., Kolokotsa, D., & Kalaitzakis, K. (2015) “Building optimization and control algorithms implemented in existing BEMS using a web based energy management and control system,” Energy and Buildings, Vol.98, pp.45-55.
45. Paris, B., Eynard, J., Grieu, S., Talbert, T., & Polit, M. (2010) “Heating control schemes for energy management in buildings,” Energy and Buildings, 42(10), 1908-1917.
46. Patterson, M. G. (1996) “What is energy efficiency? Concepts, indicators and methodological issues,” Energy Policy, 24(5), 377-390.
47. Rocha, P., Siddiquia, A., & Stadler, M. (2015) “Improving energy efficiency via smart building energy management systems: A comparison with policy measures,” Energy and Buildings, Vol.88, pp.203-213.
48. Rodriguez-Ulloal, R., & Paucar-Caceres, A. (2005) “Soft system dynamics methodology (SSDM): Combining soft systems methodology (SSM) and system dynamics (SD),” Systemic Practice and Action Research, 18(3), 303-334.
49. Roush, W., Goho, A. M., Scigliano, E., Talbot, D., Waldrop, M. M., Huang, G. T. (2003) “10 emerging technologies,” Technology Review, 106(1), 33.
50. Simone, A., Kolarik, J., Iwamatsu, T., Asada, H., Dovjak, M., Schellen, L., Shukuya, M., & Olesen, B. W. (2011) “A relation between calculated human body exergy consumption rate and subjectively assessed thermal sensation,” Energy and Buildings, 43(1), 1-9.
51. Sohrabi, K., Gao, J., Ailawadhi, V., & Pottie, G. J. (2000) “Protocols for self-organization of a wireless sensor network,” IEEE Personal Communications, 7(5), 16-27.
52. Sookchaiya, T., Monyakul, V., & Thepa, S. (2010) “Assessment of the thermal environment effects on human comfort and health for the development of novel air conditioning system in tropical regions,” Energy and Buildings, 42(10), 1692-1702.
53. Suryadevara, N.K., Mukhopadhyay, S.C., Kelly, S.D.T., & Gill, S.P.S. (2015) “WSN-Based Smart Sensors and Actuator for Power Management in Intelligent Buildings,” IEEE-ASME Transactions on Mechatronics, Vol.20 (2), pp.564-571.
54. U.S. Department of Energy (2007) Buiding Technologies Program-Planned Program Activities for 2007-2012.

55. U.S. Energy Information Administration (2014) Annual Energy Outlook 2014 with projections to 2040.
56. Wang, S. W. (2008) “Editorial: Wireless networks and their applications in building automation systems,” Hvac&R Research, 14(4), 529-533.
57. Wei, S., Li, M., Lin, W, & Sun, Y. (2010) “Parametric studies and evaluations of indoor thermal environment in wet season using a field survey and PMV-PPD method,” Energy and Buildings, 42(6), 799-806.
58. Wu, S., & Clements-Croome, D. (2007) “Understanding the indoor environment through mining sensory data - A case study,” Energy and Buildings, 39(11), 1183-1191.
59. Yao, Y., Lian, Z. W., Hou, Z. J., & Zhou, X. J. (2004) “Optimal operation of a large cooling system based on an empirical model,” Applied Thermal Engineering, 24(16), 2303-2321.
60. Yick, J., Mukherjee, B., & Ghosal, D. (2008) “Wireless sensor network survey,” Computer Networks, 52(12), 2292-2330.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-09-11起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-09-11起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw