進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0908201920195000
論文名稱(中文) 開發一套以FPGA為基礎的可攜式超高速超音波影像系統(以八通道為實例)
論文名稱(英文) A FPGA-based portable ultrafast ultrasound image system achieved by 8 channels
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 莊壹翔
研究生(英文) Yi-Hsiang Chuang
學號 P86044158
學位類別 碩士
語文別 英文
論文頁數 56頁
口試委員 指導教授-黃執中
口試委員-張瑋婷
召集委員-崔博翔
口試委員-舒宇宸
中文關鍵字 超音波系統  超高速成像  FPGA 
英文關鍵字 Ultrasound system  Ultrafast imaging  FPGA 
學科別分類
中文摘要 隨著科技的發展,超高速超音波成像已經廣泛地應用在學術及臨床領域。由於超高速成像可以在一秒內生成幾千張的影像,其特性能夠觀察到幾微秒內所發生的事情,適合應用在量測組織震動及血液流動上。目前已有剪力波彈性影像、向量督卜勒血流影像及脈波傳遞速率影像等功能性超音波影像成為主流臨床應用及研究工具,而這些超高速成像技術的應用不是由任何超音波影像系統都能夠支援的,能夠支援的系統通常有著超高速獨立式超音波通道、大容量記憶體和可程式化等特性。然而目前有這類功能的商用機器有著在規格選擇上不靈活,價格高昂性價比低等缺點,因此仍有研究團隊獨立開發自己的裝置來實現不同的應用。而本研究的目的即是開發一套能夠支援超高速超音波成像的系統,且能夠靈活地擴充或刪減規格來符合不同的使用情況。
本系統包含一個客製化5MHz、SNR高達47.8dB、16通道陣列式超音波換能器、FPGA主控板、8通道超音波激發接收模組、USB 3.0傳輸介面與高電壓電源模組。透過可程式化的邏輯閘陣列晶片去控制超音波激發接收模組並調整脈衝重複週期與中心頻率,另外在此晶片中設計了一個中央處理器來控制程序流程和資料傳輸部分。在即時成像部分,本系統能夠傳遞八個通道的資料到終端電腦做處理並以60Hz的幀率做顯示,另外系統在超高速成像模式中,可以在每秒五千幀的速度下儲存5秒的資料在暫存記憶體中,並透過高速USB 3.0介面在幾秒內傳輸到終端電腦。
以一個實驗性質的原型機來說,除了通道數目的不足外,他已具備超高速超音波成像系統所需要的規格。就目前的架構來說,可以透過堆疊更多的超音波激發接收模組來輕易地擴充功能,規格化的記憶體也能夠抽換或增加來應付更長時間的資料擷取,如此一來本系統可以應用在不同的使用情境中,加速超音波成像演算法的研究。
英文摘要 With the development of technology, ultrafast ultrasound imaging technology has been widely applied in academic and clinical fields. Because thousands of frames can be produced in one second with ultrafast imaging technology, it becomes easier to obtain what happening in few micro seconds. It is suitable for estimating tissue motion and blood flowing. At present, functional ultrasound images such as shear wave elastography, vector Doppler flow imaging and pulse wave velocity have become mainstream clinical applications and research tools. However, this technology is not supported by any ultrasound system. The systems must include some typically features like high-speed and independent T/R channel, huge memory size and programmability. But there are some disadvantages on the commercial systems such as the inflexible specification, high price and low cost performance rate. Therefore, there are still some research groups that independently develop their own devices to implement different applications. The purpose of this study is to develop a system which can support ultrafast ultrasound technology, and be expanded or deleted features flexibly to suit different usage scenarios.
This system includes a customized 5MHz, and SNR is 47.8dB, 16-channel array transducer, FPGA mother board, 8-channel ultrasound T/R module, high-speed USB 3.0 interface and power supply module with high voltage. The ultrasound pulse repetition frequency and pulse center frequency are controlled by the programmable FPGA. In addition, a central processing unit is designed in this chip to control the sequence flow and data transmission. In the real-time part, the system can transmit the data of 8 channels to the terminal computer for processing and displaying with the frame rate at 60 Hz. In the ultrafast mode, the system can store the data in the memory at 5k PRF for 5 seconds. The data can be transmitted to the terminal computer in few seconds through the high-speed USB 3.0 interface.
For an experimental prototype, in addition to the lack of the number of channels, this system has the specifications required for ultrafast ultrasound imaging systems. As far as the current architecture is concerned, it is possible to easily expand the functions by stacking more T/R modules, and swapping or adding more RAM to acquiring more data. In this way, the system can be applied in different usage scenarios to accelerate the research of ultrasound imaging algorithms.
論文目次 Contents
摘要..................................................... I
Abstract .................................................II
誌謝..................................................... IV
Contents..................................................V
List of Tables ...........................................VII
List of Figures ..........................................VIII
Chapter 1 Introduction .................................. 1
1.1 Background .......................................... 1
1.2 Literature Reviews .................................. 2
1.3 Motivations and Purpose.............................. 8
Chapter 2 Theoretical Foundations........................ 9
2.1 Ultrasound .......................................... 9
2.1.1 Acoustic Propagation .............................. 9
2.1.2 Reflection, Refraction and Attenuation............. 9
2.1.3 Ultrasound Transducer ............................. 12
2.2 Ultrasound Imaging................................... 14
2.2.1 A-mode Imaging .................................... 15
2.2.2 B-mode Imaging..................................... 16
2.2.3 M-mode Imaging..................................... 18
2.3 Ultrasonic Excitation Pulse ......................... 18
2.3.1 Unipolar........................................... 19
2.3.2 Bipolar............................................ 21
Chapter 3 Materials and Methods ......................... 22
3.1 System Overview ..................................... 22
3.1.1 Custom-Designed 16 Channel Ultrasound Transducer .. 23
3.1.2 FPGA Motherboard................................... 24
3.1.3 USB 3.0 Interface.................................. 25
3.2 8-Ch Ultrasound Module Design ....................... 26
3.2.1 High-Voltage Ultrasound Transmitter ............... 27
3.2.2 8-Channel Analog Front End......................... 30
3.2.3 Power Module with High-Voltage..................... 31
3.3 FPGA Design.......................................... 32
3.3.1 Soft-Core ......................................... 34
3.3.2 Low-voltage Differential Signaling (LVDS).......... 36
3.3.3 Dynamic Phase Shift ............................... 37
3.3.4 Direct Memory Access (DMA) ........................ 38
Chapter 4 Results ....................................... 40
4.1 Hardware Verification ............................... 40
4.1.1 Hardware Results ...................................40
4.1.2 System Prototype and Specification................. 42
4.2 Ultrasound Imaging................................... 46
4.2.1 B-mode and Angle Steeling.......................... 46
4.2.2 M-mode image ...................................... 48
4.3 Discussion .......................................... 49
Chapter 5 Conclusion and Future Work..................... 50
5.1 Conclusion........................................... 50
5.2 Future Work.......................................... 51
References .............................................. 52
參考文獻 References
[1] E. Boni et al., "Architecture of an ultrasound system for continuous real-time high frame rate imaging," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 64, no. 9, pp. 1276-1284, 2017.
[2] M. Tanter and M. Fink, "Ultrafast imaging in biomedical ultrasound," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 61, no. 1, pp. 102-119, 2014.
[3] M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K. R. Nightingale, "Quantifying hepatic shear modulus in vivo using acoustic radiation force," Ultrasound in medicine & biology, vol. 34, no. 4, pp. 546-558, 2008.
[4] J. Porée, D. Garcia, B. Chayer, J. Ohayon, and G. Cloutier, "Noninvasive vascular elastography with plane strain incompressibility assumption using ultrafast coherent compound plane wave imaging," IEEE transactions on medical imaging, vol. 34, no. 12, pp. 2618-2631, 2015.
[5] J. A. Jensen et al., "SARUS: A synthetic aperture real-time ultrasound system," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 60, no. 9, pp. 1838-1852, 2013.
[6] E. Boni et al., "ULA-OP 256: A 256-channel open scanner for development and real-time implementation of new ultrasound methods," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 63, no. 10, pp. 1488-1495, 2016.
[7] E. Boni, C. Alfred, S. Freear, J. A. Jensen, and P. Tortoli, "Ultrasound open platforms for next-generation imaging technique development," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 65, no. 7, pp. 1078-1092, 2018.
[8] C. Bruneel, R. Torguet, K. Rouvaen, E. Bridoux, and B. Nongaillard, "Ultrafast echotomographic system using optical processing of ultrasonic signals," Applied Physics Letters, vol. 30, no. 8, pp. 371-373, 1977.
[9] B. Delannoy, R. Torguet, C. Bruneel, E. Bridoux, J. Rouvaen, and H. Lasota, "Acoustical image reconstruction in parallel‐processing analog electronic systems," Journal of Applied Physics, vol. 50, no. 5, pp. 3153-3159, 1979.
[10] D. P. Shattuck, M. D.Weinshenker, S. W. Smith, and O. T. von Ramm, "Explososcan: A parallel processing technique for high speed ultrasound imaging with linear phased arrays," The Journal of the Acoustical Society of America, vol. 75, no. 4, pp. 1273-1282, 1984.
[11] M. Fink, "Time-reversed acoustics," Scientific American, vol. 281, no. 5, pp. 91-97, 1999.
[12] L. Sandrin, S. Catheline, M. Tanter, X. Hennequin, and M. Fink, "Time-resolved pulsed elastography with ultrafast ultrasonic imaging," Ultrasonic imaging, vol. 21, no. 4, pp. 259-272, 1999.
[13] M. Tanter, J. Bercoff, L. Sandrin, and M. Fink, "Ultrafast compound imaging for 2-D motion vector estimation: Application to transient elastography," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 49, no. 10, pp. 1363-1374, 2002.
[14] L. Sandrin, M. Tanter, S. Catheline, and M. Fink, "Shear modulus imaging with 2-D transient elastography," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 49, no. 4, pp. 426-435, 2002.
[15] J. Bercoff et al., "In vivo breast tumor detection using transient elastography," Ultrasound in medicine & biology, vol. 29, no. 10, pp. 1387-1396, 2003.
[16] G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, "Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 56, no. 3, pp. 489-506, 2009.
[17] S. I. Nikolov and J. A. Jensen, "In-vivo synthetic aperture flow imaging in medical ultrasound," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 50, no. 7, pp. 848-856, 2003.
[18] S. I. Nikolov and J. A. Jensen, "K-space model of motion artifacts in synthetic transmit ultrasound imaging," in IEEE Symposium on Ultrasonics, 2003, 2003, vol. 2: IEEE, pp. 1824-1828.
[19] N. Oddershede and J. A. Jensen, "Effects influencing focusing in synthetic aperture vector flow imaging," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 54, no. 9, pp. 1811-1825, 2007.
[20] J. Udesen, F. Gran, K. L. Hansen, J. A. Jensen, C. Thomsen, and M. B. Nielsen, "High frame-rate blood vector velocity imaging using plane waves: Simulations and preliminary experiments," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 55, no. 8, pp. 1729-1743, 2008.
[21] S. I. Nikolov, J. Kortbek, and J. A. Jensen, "Practical applications of synthetic aperture imaging," in 2010 IEEE International Ultrasonics Symposium, 2010: IEEE, pp. 350-358.
[22] S. I. Nikolov, Synthetic aperture tissue and flow ultrasound imaging. Center for Fast Ultrasound Imaging, Technical University of Denmark, 2002.
[23] J. A. Jensen et al., "Ultrasound research scanner for real-time synthetic aperture data acquisition," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, no. 5, pp. 881-891, 2005.
[24] J. A. Jensen et al., "Experimental ultrasound system for real-time synthetic imaging," in 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No. 99CH37027), 1999, vol. 2: IEEE, pp. 1595-1599.
[25] J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and M. H. Pedersen, "Synthetic aperture ultrasound imaging," Ultrasonics, vol. 44, pp. e5-e15, 2006.
[26] J. A. Jensen, S. I. Nikolov, T. Misaridis, and K. L. Gammelmark, "Equipment and methods for synthetic aperture anatomic and flow imaging," in 2002 IEEE Ultrasonics Symposium, 2002. Proceedings., 2002, vol. 2: IEEE, pp. 1555-1564.
[27] T. Misaridis and J. A. Jensen, "Use of modulated excitation signals in medical ultrasound. Part I: Basic concepts and expected benefits," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, no. 2, pp. 177-191, 2005.
[28] T. Misaridis and J. A. Jensen, "Use of modulated excitation signals in medical ultrasound. Part II: Design and performance for medical imaging applications," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, no. 2, pp. 192-207, 2005.
[29] T. Misaridis and J. A. Jensen, "Use of modulated excitation signals in medical ultrasound. Part III: High frame rate imaging," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, no. 2, pp. 208-219, 2005.
[30] F. Gran and J. A. Jensen, "Directional velocity estimation using a spatio-temporal encoding technique based on frequency division for synthetic transmit aperture ultrasound," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 53, no. 7, pp. 1289-1299, 2006.
[31] F. Gran and J. A. Jensen, "Spatial encoding using a code division technique for fast ultrasound imaging," ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 55, no. 1, pp. 12-23, 2008.
[32] J. A. Jensen et al., "Performance of SARUS: A synthetic aperture real-time ultrasound system," in 2010 IEEE International Ultrasonics Symposium, 2010: IEEE, pp. 305-309.
[33] F. W. Kremkau, Sonography Principles and Instruments. Elsevier Health Sciences, 2015.
[34] K. K. Shung, Diagnostic Ultrasound: Imaging and Blood Flow Measurements. CRC Press, 2005.
[35] X. Xu, J. T. Yen, and K. K. Shung, "A low-cost bipolar pulse generator for high-frequency ultrasound applications," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 54, no. 2, pp. 443-447, 2007.
[36] J. A. Brown and G. R. Lockwood, "Low-cost, high-performance pulse generator for ultrasound imaging," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 49, no. 6, pp. 848-851, 2002.
[37] J.-X. Wu, Y.-C. Du, C.-H. Lin, P.-J. Chen, and T. Chen, "A novel bipolar pulse generator for high-frequency ultrasound system," in 2013 IEEE International Ultrasonics Symposium (IUS), 2013: IEEE, pp. 1571-1574.
[38] C.-C. Huang, P.-Y. Lee, P.-Y. Chen, and T.-Y. Liu, "Design and implementation of a smartphone-based portable ultrasound pulsed-wave Doppler device for blood flow measurement," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 59, no. 1, pp. 182-188, 2012.
[39] J. H. Chang, L. Sun, J. T. Yen, and K. K. Shung, "Low-cost, high-speed back-end processing system for high-frequency ultrasound B-mode imaging," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 56, no. 7, pp. 1490-1497, 2009.
[40] C. Hu, L. Zhang, J. M. Cannata, and K. K. Shung, "Development of a digital high frequency ultrasound array imaging system," in 2010 IEEE International Ultrasonics Symposium, 2010: IEEE, pp. 1972-1975.
[41] J. M. Baran and J. G. Webster, "Design of low-cost portable ultrasound systems," in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009: IEEE, pp. 792-795.
[42] G.-D. Kim et al., "A single FPGA-based portable ultrasound imaging system for point-of-care applications," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 59, no. 7, pp. 1386-1394, 2012.
[43] W. Qiu, Y. Yu, F. K. Tsang, and L. Sun, "A multifunctional, reconfigurable pulse generator for high-frequency ultrasound imaging," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 59, no. 7, pp. 1558-1567, 2012.
[44] P. Levesque and M. Sawan, "Real-time hand-held ultrasound medical-imaging device based on a new digital quadrature demodulation processor," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 56, no. 8, pp. 1654-1665, 2009.
[45] terasIC, "DE4 user manual," 2018.
[46] Ctpress. (2019). EZ-USB® FX3™ SuperSpeed USB3.0 peripheral controller [Online]. Available: https://www.cypress.com/products/ez-usb-fx3-superspeed-usb-30-peripheral-controller.
[47] Microchip, "HV7350: 8-channel high-speed ±60V ±1A ultrasound RTZ pulser," 2016.
[48] TexasInstruments, "AFE5808: Fully integrated, 8-channel ultrasound analog front end with passive CW mixer, 0.75 nV/rtHz, 14/12-Bit, 65MSPS, 153mW/CH " 2014.
[49] Intel. (2019). NIOS® II PROCESSOR FEATURES [Online]. Available: https://www.intel.com/content/www/us/en/products/programmable/processor/nios-ii/features.html.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw