進階搜尋


下載電子全文  
系統識別號 U0026-0908201919201300
論文名稱(中文) 第三型水合物儲集層之出砂現象模擬研究
論文名稱(英文) Numerical Study on Formation Sanding from a Class-3 Gas Hydrate Deposit
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 邱詠程
研究生(英文) Yung-Cheng Chiu
學號 N46054031
學位類別 碩士
語文別 英文
論文頁數 152頁
口試委員 指導教授-謝秉志
口試委員-林祥泰
口試委員-吳偉智
口試委員-吳政岳
中文關鍵字 天然氣水合物  降壓法  數值模擬 
英文關鍵字 Gas hydrate  Depressurization  Numerical simulation 
學科別分類
中文摘要 天然氣水合物為一籠狀物,為小分子氣體被固態水分子包圍所形成。天然氣水合物在高壓低溫的溫度條件下能穩定存在,多存在於高緯度永凍土層以及海洋中的沉積岩層中。天然氣相較於化石燃料,屬於清淨能源且本身為高密度能源,有其使用上之優勢。根據台灣過去的研究指出,在西南海域的海床有水合物的富存,其中大部分的水合物好景區都被歸類為第三型水合物,然而在過去其他國家所進行的現地試驗中,常因地層出砂現象影響生產效率抑或是導致生產井塌陷等。
本研究之研究目的為,利用數值模擬法模擬第三型水合物在降壓生產的過程中地層的出砂現象。除此之外,由於目前尚未有鑽井資料,因此將進行敏感度分析與不確定性分析,進而理解特定參數對於影響出砂現象的嚴重程度。CMG STARS模擬器具有耦合熱力學、多相流體流動、岩石力學與地球化學的能力,再加上過去的前人研究,驗證STARS具備能模擬天然氣水合物地層的技術,因此本研究使用的是由CMG公司開發的STARS模擬器。
本研究中,水合物儲集層使用圓柱座標系統進行模擬,半徑與厚度為200 m與 30m,其餘參數參考前人文獻所使用的參數,生產井為一垂直井,生產條件設定為井底流壓3000 kPa,每日最高產水量不超過100 m3/day。在出砂模組的設計上,將岩石基質中部分的砂獨立作為單一成分,利用化學反應設定使原始固相的砂轉變為可流動的流砂,反應速率由水相物質的速率決定,反應是否發生則是由臨界速度決定,當原始砂粒轉變為可移動的流砂後,則是由相對滲透率決定砂量移動的能力。在考慮出砂行為的模組後,其水合物生產行為受影響,產量也大幅降低。在敏感度分析的研究中,探討了水合物濃度、滲透率、降壓速率與可生產砂之比率對於出砂現象之影響,其中,降低降壓速率對於減緩出砂現象有明顯的效果,然而可生產的砂可將此概念投射於岩石對抗流剪的效應之能力,因此當岩層不易受流剪效應的影響,其出砂量也會降低。
英文摘要 Gas hydrates are solid components in which gas molecules are trapped by water molecules. Gas hydrates are found in the geological environments with high-pressure and low-temperature conditions, and therefore large amounts of hydrate resources exist in the permafrost region and deep ocean sediments. Most geological explorations that have been conducted have noted that there are hydrate resources lying under the ocean sediments in the offshore area of southwestern Taiwan. Most of the prospective geological sites are considered to be Class-3 hydrate deposits. According to the trial gas production tests from other hydrate reservoirs, formation sanding is a critical issue during gas production from hydrates. Therefore, the purpose of this study is to construct a simulation model to simulate the formation sanding phenomenon that occurs during hydrate depressurization by using the CMG STARS simulator. In this study, the sand production module was controlled by the sand production reaction and the mobility of the components. The results of the depressurization model with the inclusion of the sand production module showed that the production behavior was slightly influenced by the formation sanding. As for the results of the sensitivity analysis, lowering the depressurization rate allowed for the mitigation of the formation sanding. The portion of producible sand reflects the degree of the formation that can withstand the shear effect, such that a smaller amount of producible sand indicates that the formation can better withstand the shear effects and produce less sand.
論文目次 Abstract I
中文摘要 II
誌謝 III
Contents IV
Nomenclature X
Chapter 1 Introduction 1
1.1 Background 1
1.2 Problem: Energy Demand 2
1.3 Solution: Hydrate Resources 6
1.4 Chemical and Physical Characteristics of Gas Hydrates 10
1.4.1 Composition 10
1.4.2 Structure 11
1.4.3 Phase Diagram 12
1.4.4 Thermal Properties 14
1.4.5 Stability of Gas Hydrates 14
1.5 Production Concepts 16
1.5.1 Classification of Gas Hydrate Deposits 16
1.5.2 Dissociation Mechanisms 17
1.5.3 Production Method 18
1.6 Recent Developments in Producing Natural Gas from Gas Hydrates 21
1.6.1 Global Research Program 21
1.6.2 Global Production Test 22
1.7 Motivation and Purpose 25
Chapter 2 Literature Review 26
2.1 Dissociation Mechanism of Gas Hydrates 26
2.2 Simulation of Gas Hydrates 29
2.3 Hydrate Simulation of Depressurization 31
2.4 Sand Production in Conventional Resources 35
2.5 Sand Production in Gas Hydrates 38
2.6 Summary 40
Chapter 3 Methodology 41
3.1 Introduction of CMG STARS 41
3.2 Conservation Equations of CMG STARS 44
3.3 Gas Hydrate Module in CMG STARS 51
3.4 Sand Production in CMG STARS 53
Chapter 4 Study Process and Simulation Designs 55
4.1 Study Process and Simulation Model Construction Work Flow 55
4.2 Numerical Simulation Model 59
4.2.1 Gas Hydrates Simulated as Solid Phase Components 60
4.2.2 Sand Production Module 70
Chapter 5 Results and Discussion 71
5.1 Solid Phase Hydrate Depressurization Model 71
5.1.1 Hydrate Model without Sand Module 71
5.1.2 Hydrate Model with the Sand Module 73
5.1.3 Comparison 77
5.2 Sensitivity Analysis 80
Chapter 6 Conclusions and Suggestions 86
6.1 Conclusions 86
6.2 Suggestions 86
References 88
Appendix A: Well Testing: Van Everdingen and Hurst Solution 97
A.1 CMG IMEX Simulator 99
A.1.1 Water Production in a Water Reservoir 99
A.2 CMG STARS Simulator 105
A.2.1 Water Production in a Water reservoir 105
A.2.2 Water Production in a Water reservoir with Hydrate Formation Pressure-Temperature Conditions 111
A.2.3 Water Production in a Class-3 Hydrate (Oil-Like Component) Deposit without Hydrate Dissociation 117
A.2.4 Class-3 Hydrate (Oil-Like Component) Deposit Production 126
A.2.5 Water Production in a Class-3 Hydrate (Solid Component) Deposit without Hydrate Dissociation 135
A.2.6 Class-3 Hydrate (Solid Component) Deposit Production 144

參考文獻 Boswell, R. (2007). "Resource Potential of Methane Hydrate Coming into Focus." Journal of Petroleum Science and Engineering 56(1): 9-13.
Boswell, R., Hunter, R., Digert, S., Hancock, S., Weeks, M., (2008). "Investigation of Gas Hydrate-bearing Sandstone Reservoirs at the " Mount Elbert" Stratigraphic Test Well", Milne Point, Alaska.
Boswell, R., and Collett, T. S., (2011). " Current Perspectives on Gas Hydrate Resources. " Energy & environmental science, 4(4), 1206-1215.
Chang, J., Ivory, J., & London, M. (2015). "History Matches and Interpretation of CHOPS Performance for CSI Field Pilot." Society of Petroleum Engineers. doi:10.2118/174466-MS
Chin, L.Y., Silpngarmlert, S., Schoderbek, D.A., (2011). "Subsidence Prediction by Coupled Modeling of Geomechanics and Reservoir Simulation for Methane Hydrate Reservoirs. " 45th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association.
Chong, Z. R., S. H. B. Yang, P. Babu, P. Linga and X. S. Li (2016). "Review of Natural Gas Hydrates as an Energy Resource: Prospects and Challenges." Applied Energy 162: 1633-1652.
Clarke, M. and P. Bishnoi (2000). "Determination of the Intrinsic Rate of Ethane Gas Hydrate Decomposition." Chemical Engineering Science 55(21): 4869-4883.
Clarke, M. and P. Bishnoi (2001). "Determination of the Activation Energy and Intrinsic Rate Constant of Methane Gas Hydrate Decomposition." The Canadian Journal of Chemical Engineering 79(1): 143-147.
CMG, (2009). Gas Hydrate simulation using STARS, Computer Modelling Group Ltd., Calgary, Alberta, Canada.
CMG, (2015). Geomechanics in CMG software, Computer Modelling Group Ltd., Calgary, Alberta, Canada.
Collett, T., (1995). 1995 National Assessment of U.S. Oil and Gas Resources (on CD-ROM) (Gautier, D.L., Goldton, G.L., et al., eds.), USGS.
Collett, T., (2004). Gas hydrates as a future energy resource. Geotimes, November, 2004 (http://www.agiweb.org/geotimes/nov04/feature_futurehydrates.html).
Collett, T., (2007). Arctic Gas Hydrate Energy Assessment Studies, The Arctic Energy Summit, Anchorage, Alaska
Collett, T. and Scientific Party, N., (2007). Occurrence of Marine Gas Hydrates in the Indian Continental Margin: Results of the Indian National Gas Hydrate Program (NGHP) Expedition 01, pp. 01.
Collett, T. S., Lee, M. W., Zyrianova, M. V., Mrozewski, S. A., Guerin, G., Cook, A. E., Goldberg, D. S., (2012). "Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Logging-while-drilling Data Acquisition and Analysis." In Marine and Petroleum Geology, Volume 34, Issue 1, 2012, Pages 41-61, ISSN 0264-8172.
Corey, A. (1964). "Hydraulic Properties of Porous Media." Colorade State University, Hydraulic Papers(3).
Daigle, H. (2016). "Relative Permeability to Water or Gas in the Presence of Hydrates in Porous Media from Critical Path Analysis." J.Petrol.Sci.Eng.
Dallimore, S. R., et al. (2005). "Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada: Preface." Bulletin of the Geological Survey of Canada(585).
Dallimore, S.R. and Collett, T.S., (2002). "Summary and Implications of the Mallik 2002 Gas Hydrate Production Research Well Program." Scientific results from the Mallik: 1-36.
Delli, M. L., Grozic, J. L. H., (2014). "Experimental Determination of Permeability of Porous Media in the Presence of Gas Hydrates." J.Petrol.Sci.Eng.120,1–9.
EIA, U. (2013). US Energy-Related carbon dioxide emissions, 2013, US Energy Information Administration, Washington, DC. http://www. eia. gov/environment/emissions/carbon/archive/2012/index. cfm.
EIA, U. (2016). "International Energy Outlook 2016." US Energy Information Administration (EIA).
Exxon Mobil. (2014). "Exxon Mobil The Outlook For Energy: A View to 2040. "
Falser, S., et al. (2013). "Temperature Increase during the Depressurization of Partially Hydrate-Saturated Formations within the Stability Region." Energy & Fuels 27(2): 796-803.
Gaddipati, M. (2008). Code Comparison of Methane Hydrate Reservoir Simulators Using CMG STARS, West Virginia University.
Gaddipati M. (2014). Reservoirs Modeling of Gas Hydrate Deposits in North Slope of Alaska and Gulf of Mexico. PhD Dissertation, West Virginia University
Gamwo, I.K. and Liu, Y., (2010). "Mathematical Modeling and Numerical Simulation of Methane Production in a Hydrate Reservoir." Industrial & Engineering Chemistry Research, 49(11): 5231-5245.
Haddad, A. S. and I. Gates (2015). "Modelling of Cold Heavy Oil Production with Sand (CHOPS) Using a Fluidized Sand Algorithm." Fuel 158: 937-947.
Handa, Y. (1986). "Compositions, Enthalpies of Dissociation, and Heat Capacities in the Range 85 to 270 K for Clathrate Hydrates of methane, Ethane, and Propane, and Enthalpy of Dissociation of Isobutane Hydrate, as Determined by a Heat-flow Calorimeter." The Journal of Chemical Thermodynamics 18(10): 915-921.
Huang, Y. J., Wu, C. Y. and Hsieh, B. Z. (2016). "Effect of Fluid Saturation on Gas Recovery from Class-3 Hydrate Accumulations Using Depressurization: A Case Study of the Yuan-An Ridge Site in Southwestern Offshore Taiwan." Energy Procedia 97: 310-317.
Hunter, R. B., Collett, T. S., Boswell, R., Anderson, B. J., Digert, S. A. Pospisil, G., Baker, R., Weeks, M. (2011). "Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Overview of Scientific and Technical Program." Marine and Petroleum Geology, 28(2): 295-310.
Isehunwa, S., et al. (2010). "Sand Failure Mechanism and Sanding Parameters in Niger Delta Oil Reservoirs."
Islam, M. R. (1994). "A New Recovery Technique for Gas Production from Alaskan Gas Hydrates." Journal of Petroleum Science and Engineering 11(4): 267-281.
Istchenko, C. M. and Gates, I. D. (2014). "Well/Wormhole Model of Cold Heavy-Oil Production with Sand."
Jeen‐Shang, L., et al. (2017). "Geomechanical Modeling of Hydrate‐Bearing Sediments during Dissociation under Shear." International Journal for Numerical and Analytical Methods in Geomechanics 41(14): 1523-1538.
Jing-sheng, L., et al. (2017). "Research Status of Sand Production during the Gas Hydrate Exploitation Process." Advances in New and Renewable Energy 5(5): 394-402.
Johnson, A., Patil, S., Dandekar, A., (2011). "Experimental Investigation of Gas-water Relative Permeability for Gas-hydrate-bearing Sediments from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope." Mar.Petrol.Geol.28 (2), 419–426.
Jung, J. W., et al. (2012). "Gas Production from Hydrate-Bearing Sediments: The Role of Fine Particles." Energy & Fuels 26(1): 480-487.
Kim, H., P. Bishnoi, R. Heidemann and S. Rizvi (1987). "Kinetics of methane hydrate decomposition." Chemical engineering science 42(7): 1645-1653.
Kim, J. and G. J. Moridis (2012). "Numerical Studies on Coupled Flow and Geomechanics with the Multiple Porosity Model for Naturally Fractured Tight and Shale Gas Reservoirs." 46th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association.
Kim, J., Moridis, G.J., Yang, D., Rutqvist, J.,(2012). "Numerical Studies on Two-way Coupled Fluid Flow and Geomechanics in Hydrate Deposits." SPE Journal 17(02): 485-501.
Kowalsky, M.B. and Moridis, G.J., (2007). "Comparison of Kinetic and Equilibrium Reaction Models in Simulating Gas Hydrate Behavior in Porous Media." Energy Conversion and Management, 48(6): 1850-1863.
Kumar, A., Maini, B., Bishnoi, R., Clarke, M., Zatsepina, O., Srinivasan, S., (2010). "Experimental Determination of Permeability in the Presence of Hydrate Sand Its Effect on the Dissociation Characteristics of Gas Hydrates in Porous Media." J. Petrol. Sci.Eng.70(1–2), 114–122. http://dx.doi.org/10.1016/j. petrol.2009.10.005.
Kvenvolden, K.A., Rogers, B.W. (2005) "Gaia's Breath—Global Methane Exhalations. " Mar. Pet. Geol. 2 (4), pp 579–590
Lee, J. (2009). "Experimental Study on the Dissociation Behavior and Productivity of Gas Hydrate by Brine Injection Scheme in Porous Rock." Energy & Fuels 24(1): 456-463.
Li, Y., et al. (2016). "Sanding Prediction and Sand-control Technology of Hydrate Sediments:A Review and Discussion."
Liang, H., Song, Y., Chen, Y., Liu, Y. (2011). "The measurement of permeability of porous media with methane hydrate." Pet.Sci.Technol.29(1),79–87.
Liu, C., Ye, Y., Meng, Q., He X, Li C. (2014) "Characterization of Natural Gas Hydrate Recovered from Both Marine and Terrestrial Regions in China: Laboratory Studies." In: Proc int’l conf gas hydrates. Beijing; p. T1–158.
Makogon, Y. F., Holditch, S. A., Makogon, T. Y. (2007) "Natural Gas-hydrates – a Potential Energy Source for the 21st Century." J Petrol Sci Eng 56:14–31.
Max, M.D., (2003). "Natural Gas Hydrate in Oceanic and Permafrost Environments, 5. Springer. MH21, (2012). Methane hydrate research consortium."
Milkov, A. V. (2004). "Global Estimates of Hydrate-bound Gas in Marine Sediments: How Much Is Really Out There?" Earth-Science Reviews 66(3): 183-197.
Moridis, G. and Collett, T. (2003). "Strategies for Gas Production from Hydrate Accumulations under Various Geologic Conditions." Lawrence Berkeley National Laboratory.

Moridis, G. (2004). "Numerical Studies of Gas Production from Class 2 and Class 3 hydrate accumulations at the Mallik Site, Mackenzie Delta, Canada." SPE Reservoir Evaluation & Engineering 7(03): 175-183.
Moridis, G., Kowalsky, M. and Pruess, K., (2005). "HydrateResSim Users Manual: A Numerical Simulator for Modeling the Behavior of Hydrates in Geologic Media." Department of Energy, Lawrence Berkeley National Laboratory, Berkeley, CA.
Moridis, G.J., Seol, Y. and Kneafsey, T.J., (2005). "Studies of Reaction Kinetics of Methane Hydrate Dissocation in Porous Media."
Moridis, G. J. and Kowalsky, M. B. (2006). "Response of Oceanic Hydrate-bearing Sediments to Thermal Stresses." Offshore Technology Conference, Offshore Technology Conference.
Moridis, G. J. and Reagan, M. T. (2007). "Gas Production from Class 2 Hydrate Accumulations in the Permafrost." SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers.
Moridis, G., (2008). "TOUGH+ HYDRATE v1. 0 user's manual: a code for the simulation of system behavior in hydrate-bearing geologic media."
Moridis, G. J. (2011). "Challenges, Uncertainties and Issues Facing Gas Production from Gas Hydrate Deposits." Lawrence Berkeley National Laboratory.
Morita, N., et al. (1989). "Realistic Sand-Production Prediction: Numerical Approach."
NETL, (2008). "An International Effort to Compare Methane Hydrate Reservoir Simulators.", U.S.A.
NETL, (2012). "Ignik Sukumi Gas Hydrate Field Test: CO2/CH4 Exchange.", U.S.A.
Numasawa, M., et al. (2008). "Objectives and Operation Overview of the JOGMEC / NRCan /Aurora Mallik Gas Hydrate Production Test." Proceedings of the 6th Internatonal conference on gas hydrate, July 6-10, Vancouver, B. C., Canada.
Ordonez, C., Grozic, J. L. H., Chen, J., (2009). "Hydraulic Conductivity of Ottawa Sand Specimens Containing R-11 Gas Hydrates." Paper presented at the 62nd Canadian Geotechnical Conference, Canadian Geotechnical Society, Halifax, NS.
Oyama, H., et al. (2010). "Experimental Analysis of sand Production from methane Hydrate Bearing Sediments Applying Depressurization Method." Journal of MMIJ 126(8_9): 497-502.
Pan, Y., et al. (2010). "Research Progress of Modelling on Cold Heavy Oil Production with Sand." SPE Western Regional Meeting. Anaheim, California, USA, Society of Petroleum Engineers.
Papamichos, E., Vardoulakis, I., Tronvoll, J. and Skjaerstein, A., (2001). "Volumetric Sand Production Model and Experiment." Int J Numer Anal Methods Geomech. 2001; 25: 789–808.
Park, K.P., (2006). “Gas Hydrate Exploration in Korea”, Proceedings of the 2nd International Symposium on Gas Hydrate Technology, Daejeon, Korea, Nov. 1-2.
Reagan, M. (2009). "Sensitivity Analysis of Gas Production from Class 2 and Class 3 Hydrate Deposits." Lawrence Berkeley National Laboratory.
Rutqvist, J. and G. J. Moridis (2008). "Development of a Numerical Simulator for Analyzing the Geomechanical Performance of Hydrate-Bearing Sediments." The 42nd U.S. Rock Mechanics Symposium (USRMS). San Francisco, California, American Rock Mechanics Association.
Rutqvist, J. and Moridis, G.J. (2009). "Numerical Studies on the Geomechanical Stability of Hydrate-b Sediments." SPE J. 14 (2): 267–282. SPE-126129-PA.
Rutqvist, J., Moridis, G.J., Grover, T., and Collett, T. (2009). "Geomechanical Response of Permafrost-associated Hydrate Deposits to Depressurization-induced Gas Production. " J. Pet. Sci. Eng. 67 (1–2): 1–12.
Rutqvist, J., Vasco, D.W., and Myer, L. (2010). "Coupled Reservoir-geomechanical Analysis of CO2 Injection and Ground Deformations at In Salah, Algeria." Int. J. Greenhouse Gas Control 4 (2): 225–230.
Ryu, B. J., et al. (2009). "Gas Hydrates in the Western Deep-water Ulleung Basin, East Sea of Korea." In Marine and Petroleum Geology, Volume 26, Issue 8, Pages 1483-1498.
Santamarina, J. and C. Ruppel (2010). "The Impact of Hydrate Saturation on the Mechanical, Electrical, and Thermal Properties of Hydrate-Bearing Sand, Silts, and Clay." Geophysical Characterization of Gas Hydrates, Society of Exploration Geophysicists: 373-384.
Shahbazi, A. and M. Pooladi-Darvish (2014). "Behavior of Depressurization in Type III Hydrate Reservoirs."
Shimada, W., et al. (2005). "Texture Change of Ice on Anomalously Preserved Methane Clathrate Hydrate." The Journal of Physical Chemistry B 109(12): 5802-5807.
Sloan, E. D. (1998). "Gas Hydrates:  Review of Physical/Chemical Properties." Energy & Fuels 12(2): 191-196.
Sloan Jr, E. D. and C. Koh (2007). Clathrate hydrates of natural gases, CRC press.
Sosso, G. C., et al. (2016). "Crystal Nucleation in Liquids: Open Questions and future Challenges in Molecular Dynamics Simulations." Chemical reviews 116(12): 7078-7116.
STARS, (2015). Advanced process and thermal reservoir simulator. Computer Modelling Group Ltd., Calgary, Alberta, Canada.
Stone, H. L. (1973). "Estimation of Three-Phase Relative Permeability and Residual Oil Data."
Sun, C. C., (2016). "Introduction of Global Gas Hydrate Resources." Cross-Strait Conference on Geochemical and Environmental Geology 118-119 (in Chinese).
Takahashi, H., et al. (2001). "Exploration for Natural Hydrate in Nankai-Trough Wells Offshore Japan." Offshore Technology Conference. Houston, Texas, Offshore Technology Conference.
Takahashi, H. and Y. Tsuji (2005). "Multi-well Exploration Program in 2004 for Natural Hydrate in The Nankai-Trough Offshore Japan." Offshore Technology Conference. Houston, Texas, Offshore Technology Conference.
Trofimuk, A., Cherskiy, N. and Tsarev, V., (1973). Dokl. Akad. Nauk SSSR, 212, 931–934
Uddin, M., Coombe, D., Law, D., and Gunter, B., (2008). "Numerical Studies of Gas Hydrate Formation and Decomposition in a Geological Reservoir." Journal of energy resources technology 130(3): 032501.
Uchida, S., (2012). "Numerical Investigation of Geomechanical Behaviour of Hydrate-bearing sediments. " PhD thesis, University of Cambridge.
Uchida, S., Soga, K., Yamamoto, K., (2012). "Critical State Soil Constitutive Model for Methane Hydrate Soil." Journal of Geophysical Research: Solid Earth (1978 –2012), 2012, 117(B3).
Uchida, S., et al. (2016). "Sand production modeling of the 2013 Nankai offshore gas production test."
Uchida, S., Klar, A., Yamamoto, K., (2016). "Sand Production Model in Gas Hydrate-Bearing Sediments." International Journal of Rock Mechanics and Mining Sciences 86 : 303-316.
USGS. (2014). "U.S. Geological Survey Gas Hydrates Project." website: https://woodshole.er.usgs.gov/project-pages/hydrates/database.html
Waite, W., DeMartin, B., Kirby, S., Pinkston, J., Ruppel, C. (2002). "Thermal Conductivity Measurements in Porous Mixtures of Methane Hydrate And Quartz Sand." Geophysical Research Letters 29(24).
Wan, R. G. and J. Wang (2001). "Analysis of Sand Production in Unconsolidated Oil Sand Using a Coupled Erosional-Stress-Deformation Model." Canadian International Petroleum Conference. Calgary, Alberta, Petroleum Society of Canada.
Wang, J., et al. (2011). "Numerical Modeling of Massive Sand Production." SPE Annual Technical Conference and Exhibition. Denver, Colorado, USA, Society of Petroleum Engineers.
Wang, Y. (1997). "Sand Production and Foamy Oil Flow in Heavy-Oil Reservoirs." International Thermal Operations and Heavy Oil Symposium. Bakersfield, California, Society of Petroleum Engineers.
Weingarten, J. S. and T. K. Perkins (1995). "Prediction of Sand Production in Gas Wells: Methods and Gulf of Mexico Case Studies."
White, M. and McGrail, B., (2006). "STOMP-HYD: A new Numerical Simulator for Analysis of Methane Hydrate Production from Geologic Formations", pp. 1-2.
Wu, B. and C. P. Tan (2002). "Sand Production Prediction of Gas Field - Methodology and Field Application." SPE/ISRM Rock Mechanics Conference. Irving, Texas, Society of Petroleum Engineers.
Wu, C. Y. and Hsieh, B. Z. (2016). "Gas Recovery from Hydrate Accumulations Using Depressurization: A Case Study of the Yuan-An Ridge Site in Southwestern Offshore Taiwan." The Bulletin of the Chinese Institute of Mining and Metallurgical Engineers (236): 46-61 (in Chinese).
Wu, C. Y, Chiu, Y. C., Huang, Y. J. and Hsieh, B. Z. (2017). "Effects of Geomechanical Mechanism on the Gas Production Behavior: A Simulation Study of Class-3 Hydrate Deposit of Four-Way-Closure Ridge Offshore Southwestern Taiwan." Energy Procedia.
Wu, C. Y (2018). "Comparisons of Different Hydrate Simulation Design for Class-1 Gas Hydrate Deposits. PhD Dissertation, National Cheng Kung University
Yousif, M. H., Abass, H. H., Selim, M. S., Sloan, E. D., (1991). "Experimental and Theoretical Investigation of Methane-gas-hydrate Dissociation in Porous Media. " SPE Reserv. Eng 6(1),69–76. http://dx.doi.org/10.2118/18320-pa.
Yu, M., et al. (2017). "Numerical Study of Gas Production from Methane Hydrate Deposits by Depressurization at 274K." Applied Energy.
Zhang, L. and M. B. Dusseault (2004). "Sand-Production Simulation in Heavy-Oil Reservoirs."
Zhang, H., S, Yang, N. Wu, X. Su, M. Holland, P. Schultheiss, K. Rose, H. Butler, G. Humphrey, and GMGS-1 Science Team, (2007). Successful and surprising results for China’s first gas hydrate drilling expedition, Fire In The Ice, NETL Methane Hydrates R&D Program Newsletter, Fall 2007.
Zhong, S. X. (2005). "Research of global gas hydrate resources." Central Geological Survey, MOEA (in Chinese).
Zhong, S. X. and Zhangm, S. F. (2001). " Review and Prospect of Methane Hydrate." Bulletin of the Central Geological Survey, MOEA (in Chinese).
Zhou M., Soga K., Xu E., Uchida S., and Yamamoto K. (2014) "Numerical Study on Eastern Nankai Trough Gas Hydrate Production Test," presented at the 2014 Offshore Technology Conference, Houston, Texas, U.S.A., 2014/05/05 - 2014/05/08.
Zhou, Q., Birkholzer, J. T., Tsang, C. F. and Rutqvist, J. (2008). "A Method for Quick Assessment of CO2 Storage Capacity in Closed and Semi-closed Saline Formations." International Journal of Greenhouse Gas Control 2(4): 626-639.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw