進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0908201910075600
論文名稱(中文) 用於數位孿生建築消防系統之逃生演算法
論文名稱(英文) An Evacuation Algorithm for Digital Twin Building Fire System
校院名稱 成功大學
系所名稱(中) 製造資訊與系統研究所
系所名稱(英) Institute of Manufacturing Information and Systems
學年度 107
學期 2
出版年 108
研究生(中文) 葉冠廷
研究生(英文) Kuan-Ting Ye
學號 P96064087
學位類別 碩士
語文別 中文
論文頁數 51頁
口試委員 指導教授-蔡佩璇
口試委員-朱宗賢
口試委員-陳盈如
口試委員-李佳衛
中文關鍵字 數位孿生  建築消防系統架構  室內火災路徑規劃 
英文關鍵字 Digital twin  Building fire system architecture  Indoor fire path planning 
學科別分類
中文摘要 當火災發生時,民眾需要立刻做決策判斷該如何逃生,因為往外逃生的機會通常只在火災初期,此時火災燃燒情境明確,表示逃生路徑上沒有會致人於死的濃煙和熱量。然而,大多數民眾聽到火災警鈴後,都先採取觀望的動作,導致寶貴的逃生時間被浪費。另外,台灣火災死亡高峰群在20至60歲,與我們直覺認為小孩和老人不同,青壯年並非行動力較差而在火場中喪命,由此可見民眾面對火場時不知如何正確應變,是火場致死的主要原因之一。
本論文對於改善民眾在室內火災逃生過程之危險,提出建築火災消防系統之研究,將包含兩個部分:(1)以數位孿生(Digital Twin)概念建立系統架構,在此架構之下,當真實世界發生火災時,系統就能根據數位孿生內的資料與演算法,在第一時間給予民眾逃生建議與逃生規劃;(2)提出一個啟發式室內路徑規劃之演算法,在火災中根據人員、火的位置選擇較安全的出口並建立一條的逃生路線,協助民眾逃離至出口時能有效避開靠近燃燒範圍的危險區域,並在實驗部分以逃生生存率與其他論文方法做比較,以說明本方法能夠提高人在火災逃離時的生存率。
英文摘要 When a fire breaks out, people need to make decisions immediately to determine how to escape, because the opportunity to escape is usually only in the early stages of the fire. Taiwan's fire death peaks are between 20 and 60 years old. These people are killed in the fire, not because of their mobility. This shows that people do not know how to respond correctly when facing the fire, which is one of the main reasons for the death of the fire.
In this paper, to decrease the danger of people during the evacuation in the indoor fire, the research on building fire system will include two parts. (1) Establish a system architecture based on the concept of the digital twin. Under this framework, when a fire occurs in the real world, the application of the system can give people the escape proposal and plan according to the data and algorithms in the digital twin. (2) Propose a heuristic algorithm based on the concept of force for indoor path planning. In the fire, the algorithm chooses a safer exit according to the location of personnel and fire and establish a route to help people avoid the danger of close to the burning area when they escape to the exit. In the experimental part, the escape survival rate is compared with other methods to show that our method can improve the survival rate of people in the event of a fire escape.
論文目次 摘要 I
Extended Abstract II
致謝 VII
目錄 VIII
表目錄 X
圖目錄 XI
第1章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目標 4
1.4 論文架構 5
第2章 文獻探討 6
2.1 數位孿生 6
2.2 室內定位 7
2.3 室內火災逃生系統 9
第3章 數位孿生系統 10
3.1 系統架構 10
3.2 案例情景 13
第4章 逃生演算法 16
4.1 概念 16
4.2 演算法流程 17
4.3 推力與拉力之計算 19
4.4 演算法虛擬碼 22
第5章 實驗 26
5.1 實驗環境設置與假設 26
5.2 比較方法 28
5.3 比較項目 31
5.4 實驗結果 35
第6章 總結 45
6.1 結論 45
6.2 未來方向 45
參考文獻 47
參考文獻 [1] 中華民國內政部消防署,「106年全國火災統計分析」,2018。
[2] 林金宏,「活著離開3」,雙葉書廊,台灣,2018。
[3] 中華民國內政部消防署,「105年全國火災統計分析」,2017。
[4] Michael Grieves, “Digital twin: Manufacturing excellence through virtual factory replication.” White paper, 2014.
[5] Edward Glaessgen and David Stargel, “The digital twin paradigm for future NASA and US Air Force vehicles.” 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012.
[6] Thomas Gabor, Lenz Belzner, Marie Kiermeier, Michael Till Beck, and Alexander Neitz, “A simulation-based architecture for smart cyber-physical systems.” 2016 IEEE International Conference on Autonomic Computing (ICAC), IEEE, 2016.
[7] Onome Scott-Emuakpor, Tommy George, Joseph Beck, Jeremy Schwartz, Casey Holycross, M. H. Herman Shen, and Joseph Slater, “Material property determination of vibration fatigued DMLS and cold-rolled nickel alloys.” ASME Turbo Expo 2014: turbine technical conference and exposition. American Society of Mechanical Engineers, 2014.
[8] Greyce Schroeder, Charles Steinmetz, Carlos Eduardo Pereira, Ivan Muller, Natanael Garcia, Danubia Espindola, and Ricardo Rodrigues, “Visualising the digital twin using web services and augmented reality.” 2016 IEEE 14th International Conference on Industrial Informatics (INDIN), Poitiers, pp. 522-527, 2016.
[9] Yi Cai, Binil Starly, Paul Cohen, Yuan-Shin Lee, “Sensor Data and Information Fusion to Construct Digital-twins Virtual Machine Tools for Cyber-physical Manufacturing.” Procedia Manufacturing, Volume 10, pp. 1031-1042, 2017.
[10] F Tao, et al, “Theories and technologies for cyber-physical fusion in digital twin shop-floor.” Computer integrated manufacturing systems, vol. 23, no. 8, pp. 1603-1611, 2017.
[11] Eoghan Furey, Kevin Curran, and Paul McKevitt, “HABITS: a Bayesian filter approach to indoor tracking and location.” International Journal of Bio-Inspired Computation (IJBIC) 4.2, pp. 79-88, 2012.
[12] Keven Curran, Eoghan Furey, Tom Lunney, Jose Santos, Derek Woods, and Aiden McCaughey, “An evaluation of indoor location determination technologies.” Journal of Location Based Services 5.2, pp. 61-78, 2011.
[13] George E Violettas, Tryfon L. Theodorou, and Christos K. Georgiadis, “Netargus: An snmp monitor & wi-fi positioning, 3-tier application suite.” 2009 Fifth International Conference on Wireless and Mobile Communications, IEEE, 2009.
[14] Jianwei Niu, Bowei Wang, Long Cheng, and Joel J. P. C. Rodrigues, “WicLoc: An indoor localization system based on WiFi fingerprints and crowdsourcing.” 2015 IEEE international conference on Communications (ICC), IEEE, 2015.
[15] Chenshu Wu, Zheng Yang, and Yunhao Liu, “Smartphones based crowdsourcing for indoor localization.” IEEE Transactions on Mobile Computing 14.2, pp. 444-457, 2015.
[16] 王鈞毅,「基於低功耗藍牙的智慧家庭之室內定位」,碩士論文,2015。
[17] Pavel Kriz, Filip Maly, and Tomas Kozel, “Improving indoor localization using bluetooth low energy beacons.” Mobile Information Systems, 2016.
[18] William Storms, Jeremiah Shockley, and John Raquet, “Magnetic field navigation in an indoor environment.” 2010 Ubiquitous Positioning Indoor Navigation and Location Based Service, IEEE, 2010.
[19] Ryoji Ban, Katsuhiko Kaji, Kei Hiroi, and Nobuo Kawaguchi, “Indoor positioning method integrating pedestrian Dead Reckoning with magnetic field and WiFi fingerprints.” 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), IEEE, 2015.
[20] Kang Wonho, and Youngnam Han, “SmartPDR: Smartphone-based pedestrian dead reckoning for indoor localization.” IEEE Sensors journal 15.5, pp. 2906-2916, 2015.
[21] Subhojyoti Bose, Amit K Gupta, and Peter Handel, “On the noise and power performance of a shoe-mounted multi-IMU inertial positioning system.” 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), IEEE, 2017.
[22] Avgoustinos Filippoupolitis and Erol Gelenbe, “A distributed decision support system for building evacuation.” 2009 2nd Conference on Human System Interactions, IEEE, 2009.
[23] Gokce Gorbil, Avgoustinos Filippoupolitis, and Erol Gelenbe, “Intelligent navigation systems for building evacuation.” Computer and information sciences II, Springer, London, pp. 339-345, 2011.
[24] W. Zeng and R. L. Church, “Finding shortest paths on real road networks: the case for A*.” International journal of geographical information science 23.4, pp. 531-543, 2009.
[25] Jingya Liu, Roberto Rojas-Cessa, and Ziqian Dong, “Sensing, calculating, and disseminating evacuating routes during an indoor fire using a sensor and diffusion network.” 2016 IEEE 13th International Conference on Networking, Sensing, and Control (ICNSC), IEEE, 2016.
[26] ByoungChul Ko, Kwang-Ho Cheong, and Jae-Yeal Nam, “Early fire detection algorithm based on irregular patterns of flames and hierarchical Bayesian Networks.” Fire safety journal 45.4, pp. 262-270, 2010.
[27] Aveek Purohit, Zheng Sun, Frank Mokaya, and Pei Zhang, “SensorFly: Controlled-mobile sensing platform for indoor emergency response applications.” Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks, IEEE, 2011.
[28] Min-Yuan Cheng, Kuan-Chang Chiu, Yo-Ming Hsieh, I-Tung Yang, Jui-Sheng Chou, and Yu-Wei Wu, “BIM integrated smart monitoring technique for building fire prevention and disaster relief.” Automation in Construction 84, pp. 14-30, 2017.
[29] Kevin McGrattan, et al, “Fire dynamics simulator technical reference guide volume 1: mathematical model.” National Institute of Standards and Technology Special Publication 1018, 2013.
[30] K. McGrattan, R. McDermott, S. Hostikka and J. Floyd, “Fire Dynamics Simulator (Version 5), User’s Guide.” NIST Special Publication 1019- 5, Nat. Inst. of Standards and Technology, Gaithersburg, Maryland, USA, 2010.
[31] Thunderhead Engineering, “PyroSim: A Model Construction Tool for Fire Dynamics Simulator (FDS).” PyroSim User Manual, Thunderhead Eng., Manhattan, USA, 2014.
[32] Wei Zeng and Richard L. Church, “Finding shortest paths on real road networks: the case for A.” International journal of geographical information science 23.4, pp. 531-543, 2009.
[33] Avgoustinos Filippoupolitis and Erol Gelenbe, “An emergency response system for intelligent buildings.” Sustainability in Energy and Buildings, Springer, Berlin, Heidelberg, pp. 265-274, 2012.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-06-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-06-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw