進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0908201810391700
論文名稱(中文) 光遺傳學對於鈣離子依賴性轉錄因子與細胞爬行之調控
論文名稱(英文) Modulation of Ca2+-dependent transcription factors and cell migration by optogenetics
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 賴怡旬
研究生(英文) Yi-Shyun Lai
學號 P86054048
學位類別 碩士
語文別 英文
論文頁數 65頁
口試委員 口試委員-湯銘哲
口試委員-楊德明
口試委員-林錫慧
口試委員-李純純
指導教授-邱文泰
中文關鍵字 光遺傳學  鈣離子依賴性轉錄因子  細胞爬行 
英文關鍵字 optogenetics  Ca2+-dependent transcription factors  cell migration 
學科別分類
中文摘要 細胞調節中鈣離子的訊號傳導扮演廣泛的角色,包括:授精、細胞增生與分化、肌肉收縮或者是細胞學習與死亡。鈣離子作用也表現於細胞爬行以及鈣離子依賴性轉錄因子活化(NFAT、NFκB和CREB)。然而,在現今的研究中無法精準的在時間與空間上調控細胞內的鈣離子。因此,我們假設不同鈣離子振盪波會影響鈣離子依賴性轉錄因子與細胞行為。本研究利用光遺傳學平台來創造出不同的鈣離子振盪波,藉由調控相關光參數,包含光密度、頻率與作用時間,並利用470 nm藍光活化表達於人骨肉瘤細胞上之光敏感通道(CatCh)使鈣離子流入細胞內。結果顯示,低頻率鈣離子振盪會使NFκB活化,反之高頻率鈣離子振盪會使NFAT活化,另一方面,不管鈣離子振盪頻率高低CREB皆活化。此外,利用傷口癒合分析得到在低頻率鈣離子振盪下會促進細胞爬行。然而,進一步也探討細胞爬行的相關蛋白發現ERK和AKT皆有活化。最後,得知低頻率鈣離子振盪會使NFκB活化與細胞爬行速度增加。本研究探討不同鈣離子振盪波如何去影響鈣離子相關訊息的傳遞和細胞行為。
英文摘要 Calcium (Ca2+) signaling can regulate a wide spectrum of cellular processes, including fertilization, proliferation, differentiation, muscle contraction, cell learning, and death. Cell migration and activation of several transcription factors are also shown in a Ca2+-dependent response, such as NFAT (nuclear factor of activated T-cells), NFκB (nuclear factor kappa-light-chain-enhancer of activated B cell), and CREB (cAMP response element binding protein). However, control of intracellular Ca2+ with spatial and temporal precision is a limitation in the current studies on these topics. Here, we hypothesize that different Ca2+ oscillations can affect the Ca2+-dependent gene transcription and cell function profiles. In this study, an optogenetic platform was used for the purpose of creating different Ca2+ oscillation patterns through manipulation of lighting parameters, including density, frequency, duty cycle, and duration. U2OS cell overexpression of Ca2+ translocating channelrhodopsin (CatCh) can be activated by 470 nm blue light to induce Ca2+ influx. Our results showed that activation of NFκB required low-frequency Ca2+ oscillations, whereas high-frequency Ca2+ oscillations tended to activate NFAT. On the other hand, CREB activation occurred regardless of the frequency of Ca2+ oscillations. In addition, the upregulation of cell migration upon low-frequency Ca2+ oscillations was analyzed using a wound healing assay. However, further exploration is needed to elucidate the relevant proteins, ERK and AKT, if they are activated during cell migration. Finally, the activation of NFκB and increased ability cell migration were found under low-frequency Ca2+ oscillations. This study investigated how different Ca2+ oscillators affect Ca2+-related transmission and cellular functions.
論文目次 Contents
Abstract i
中文摘要 ii
Acknowledge iii
Contents iv
Figure contents vi
Chapter 1 Introduction 1
1.1 The important role of calcium (Ca2+) in cells 1
1.2 Ca2+ dependent transcription factors 3
1.2.1 CREB 4
1.2.2 NFAT 4
1.2.3 NFκB 5
1.3 Cell migration 6
1.4 Optogenetics 7
1.5 The specific aims of the study 8
Chapter 2 Materials and methods 10
2.1 Cell culture 10
2.2 Optogenetic system 10
2.3 Live and dead assay 10
2.4 Cell proliferation assay 10
2.5 Western blotting 11
2.6 Immunofluorescence staining 12
2.7 Migration assay 12
2.8 NFκB, ERK and AKT inhibitors 13
2.9 Statistical analysis 13
Chapter 3 Results 14
3.1 The optogenetic tool. 14
3.2 Manipulating Ca2+ frequencies to evaluate cell viability. 14
3.3 Manipulating Ca2+ oscillation affects cell proliferation.. 15
3.4 Ca2+ oscillation frequencies affect cell migration. 15
3.5 Amplitude and duty cycle of Ca2+ oscillation affects cell migration.. 16
3.6 Regulation of Ca2+ oscillations induced transcription factors activation (CREB, NFAT, and NFκB).. 17
3.7 Ca2+ oscillations affect cell migration-related signaling pathway. 17
3.8 Different inhibitors inhibit Ca2+-related cell migration. 18
Chapter 4 Discussion 19
References 22
Figures 27

Figure contents
Figure 1. The optogenetic system and molecular tool – CatCh. 27
Figure 2. Modulation of Ca2+ oscillations to affect cell viability in U2OS-CatCh-Venus. 29
Figure 3. Modulation of Ca2+ oscillations to affect cell viability in U2OS-WT. 31
Figure 4. Modulation of Ca2+ oscillations by different frequency affects cell proliferation. 33
Figure 5. Modulation of Ca2+ oscillations by low frequency affects cell proliferation. 35
Figure 6. Modulation of Ca2+ oscillations by low frequency and high cell density affects cell proliferation. 37
Figure 7. Modulation of Ca2+ oscillations by different frequencies affects cell migration. 39
Figure 8. Modulation of Ca2+ oscillations by low frequencies and different light treatment times affects cell migration. 41
Figure 9. Modulation of Ca2+ oscillations with different power affects cell migration. 43
Figure 10. Modulation of Ca2+ oscillations by different duty cycles affects cell migration. 45
Figure 11. Activating of transcription factor CREB using optogenetics. 47
Figure 12. Activating of transcription factor NFAT using optogenetics. 49
Figure 13. Activating of transcription factor NFκB using optogenetics. 51
Figure 14. Ca2+ oscillations affected migration-related proteins. 53
Figure 15. NFκB inhibitor decreased the potency of migration in U2OS-CatCh-Venus cells using blue light stimulation. 55
Figure 16. ERK inhibitor decreased the potency of migration in U2OS-CatCh-Venus cells using blue light stimulation. 57
Figure 17. AKT inhibitor decreased the potency of migration in U2OS-CatCh-Venus cells using blue light stimulation. 59
Figure 18. AKT inhibitor decreased the potency of migration in U2OS-CatCh-Venus cells using blue light stimulation. 61
Figure 19. Proof of inhibitory effect of inhibitors. 63
Figure 20. The schematic of this study. 65

參考文獻 Aoki K, Kondo Y, Naoki H, Hiratsuka T, Itoh RE, Matsuda M. (2017) Propagating wave of ERK activation orients collective cell migration. Developmental Cell. 43(3):305–317.
Berridge MJ, Bootman MD, Roderick HL. (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nature Reviews Molecular Cell Biology. 4(7):517–529.
Berridge MJ, Lipp P, Bootman MD. (2000) The versatility and universality of calcium signaling. Nature Reviews Molecular Cell Biology. 1(1):11–21.
Bito H, Deisseroth K, Tsien RW. (1996) CREB phosphorylation and dephosphorylation: a Ca2+- and stimulus duration-dependent switch for hippocampal gene expression. Cell. 87(7):1203–1214.
Carafoli E, Santella L, Brance D, Brisi M. (2001) Generation, control, and processing of cellular calcium signals. Critical Reviews in Biochemistry and Molecular Biology. 36(2):107–260.
Carlezon WA Jr, Duman RS, Nestler EJ. (2005) The many faces of CREB. Trends in Neurosciences. 28(8):436–445.
Carter ME, Lecea LD. (2011) Optogenetic investigation of neural circuits in vivo. Trends in Molecular Medicine. 17(4):197‒206.
Chamero P, Villalobos C, Alonso MT, García-Sancho J. (2002) Dampening of cytosolic Ca2+ oscillations on propagation to nucleus. The Journal of Biological Chemistry. 277(52):50226–50229.
Cheng KT, Liu X, Ong HL, Swaim W, Ambudkar IS. (2011) Local Ca2+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca2+ signals required for specific cell functions. PLOS Biology 9(3):e1001025.
Clapham DE. (2007) Calcium signaling. Cell. 131(6):1047–1058.
Courtney S, Jaya P, Srikumar C. (2015) The role of nAChR and calcium signaling in pancreatic cancer initiation and progression. Cancers. 7(3):1447–1471.
Foutz TJ, Arlow RL, McIntyre CC. (2012) Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron. Journal of Neurophysiology. 107(12):3235–3245.
Franco SJ, Huttenlocher A. (2005) Regulating cell migration: calpains make the cut. Journal of Cell Science. 118(17):3829–3838.
Gonzalez GA, Montminy MR. (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell. 59(4):675–680.
Graef LA, Mermelstein PG, Stankunas K, Neilson JR, Deisseroth K, Tsien RW, Crabtree GR. (1999) L-type calcium channels and GSK-3 regulate the activity of NFATc4 in hippocampal neurons. Nature. 401(6754):703–708.
Gwack Y, Feske S, Srikanth S, Hogan PG, Rao A. (2007) Signalling to transcription: store-operated Ca2+ entry and NFAT activation in lymphocytes. Cell Calcium. 42(2):145–156.
Hannanta-Anan P, Chow BY. (2016) Optogenetic control of calcium oscillation waveform defines NFAT as an integrator of calcium load. Cell Systems. 2(4):283–288.
Hayden MS, Ghosh S. (2012) NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes & Development. 26(3):206–234.
Hogan PG, Chen L, Nardone J, Rao A. (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes & Devlopment. 17(18):2205–2232.
Huang C, Jacobson K, Schaller MD. (2004) MAP kinases and cell migration. Journal of Cell Science. 117(Pt20):4619–4628.
Huttenlocher A, Palecek SP, Lu Q, Zhang W, Mellgren RL, Lauffenburger DA, Ginsberg MH, Horwitz AF. (1997) Regulation of cell migration by the calcium-dependent protease calpain. The Journal of Biological Chemistry. 272(52):32719–32722.
Hogan PG, Lewis RS, Rao A. (2010) Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annual Review of Immunology. 28(1):491–533.
Jiehui D, Hui H, Debao Q Juangjuan T, Wenjia C, Zheng L, Qian C, JingY, Jin B, Yanping Z, Junnian Z. (2015) Rap2B promotes proliferation, migration, and invasion of human breast cancer through calciumrelated ERK1/2 signaling pathway. Scientific Reports. 5(1):12363.
Karin M, Delhase M. (2000) The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Seminars in Immunology. 12(1):85–98.
Kim JM, Lee M, Kim N, Heo WD. (2016) Optogenetic toolkit reveals the role of Ca2+ sparklets in coordinated cell migration. Proceedings of the National Academy of Sciences of the United States of America. 113(21):5952–5957.
Kleinlogel S, Feldbauer K, Dempski RE, Fotis H, Wood PG, Bamann C, Bamberg E. (2011) Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nature Neuroscience. 14(4):513–518.
Kyung T, Lee S, Kim JE, Cho T, Park H, Jeong YM, Kim D, Shin A, Kim S, Baek J, Kim J, Kim NY, Woo D, Chae S, Kim CH, Shin HS, Han YM, Kim D, Heo WD. (2015) Optogenetic control of endogenous Ca2+ channels in vivo. Nature Biotechnology. 33(10):1092–1096.
Liu J, Liu Q, Wan Y, Zhao Z, Yu H, Luo H, Tang Z. (2014) Osteopontin promotes the progression of gastric cancer through the NF-κB pathway regulated by the MAPK and PI3K. International Journal of Oncology. 45(1):282–290.
Mancini M, Toker A. (2009) NFAT proteins: emerging roles in cancer progression. Nature Reviews Cancer. 9(11):810–820.
Müller MR, Rao A. (2010) NFAT, immunity and cancer: a transcription factor comes of age. Nature Reviews Immunology. 10(9):645–656.
Oeckinghaus A, Ghosh S. (2009) The NF-kappaB family of transcription factors and its regulation. Cold Spring Harbor Perspectives in Biology. 1(4):a000034.
Parekh AB. (2011) Decoding cytosolic Ca2+ oscillations. Trends in Biochemical Sciences. 36(2):78–87.
Paupe V, Prudent J. (2018) New insights into the role of mitochondrial calcium homeostasis in cell migration. Biochemical and Biophysical Research Communications. 500(1):75–86
Pauly RR, Bilato C, Sollott SJ, Monticone R, Kelly PT, Lakatta EG, Crow MT. (1995) Role of calcium/calmodulin-dependent protein kinase II in the regulation of vascular smooth muscle cell migration. Circulation. 91(4):1107–1115.
Pinto MC, Kihara AH, Goulart VA, Tonelli FM, Gomes KN, Ulrich H, Resende RR. (2015) Calcium signaling and cell proliferation. Cellular Signalling. 27(11):2139–2149.
Prakriya M, Lewis RS. (2015) Store-operated calcium channels. Physiological Reviews. 94(4):1383–1436.
Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR. (2003) Cell migration: integrating signals from front to back. Science. 302(5651):1704–1709.
Sáez PJ, Villalobos-Labra R, Westermeier F, Sobrevia L, Farías-Jofré M. (2014) Modulation of endothelial cell migration by ER stress and insulin resistance: a role during maternal obesity? Frontiers in Pharmacology. 5:189.
Shan S, Yaoming L, Samantha L, Michael C. (2007) Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells. Federation of American Societies for Experimental Biology. 21(7):1472–1480.
Smedler E, Uhlén P. (2014) Frequency decoding of calcium oscillations. Biochimica et Biophysica Acta. 1840(3):964–969.
Sun SC, Ley SC. (2008) New insights into NF-kappaB regulation and function. Trends in Immunology. 29(10): 469–478.
Suzuki J, Kanemaru K, Iino M. (2016) Genetically encoded fluorescent indicators for organellar calcium imaging. Biophysical Journal. 111(6):1119–1131.
Takahashi A, Camacho P, Lechleiter JD, Herman B. (1999) Measurement of intracellular calcium. Physiological Reviews. 79(4):1089–1125.
Uhlén P, Fritz N. (2010) Biochemistry of calcium oscillations. Biochemical and Biophysical Research Communications. 396(1):28–32.
Vukcevic M, Zorzato F, Spagnili G, Treves S. (2010) Frequent calcium oscillations lead to NFAT activation in human immature dendritic cells. The Journal of Biological Chemistry. 285(21):16003–16011.
Wei C, Wang X, Chen M, Ouyang K, Song LS, Cheng H. (2009) Calcium flickers steer cell migration. Nature. 457(7231):901–905.
Wei C, Wang X, Zheng M, Cheng H. (2012) Calcium gradients underlying cell migration. Current Opinion in Cell Biology. 24(2):254–261.
Wheeler DG, Barrett CF, Groth RD, Safa P, Tsien RW. (2008) CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation-transcription coupling. Journal of Cell Biology. 183(5):849–863.
Whitaker M. (2006) Calcium at fertilization and in early development. Physiological Reviews. 86(1):25–88.
Xu Y, Nan D, Fan J, Bogan JS, Toomre D. (2016) Optogenetic activation reveals distinct roles of PIP3 and Akt in adipocyte insulin action. Journal of Cell Science. 129(10):2085–2095.
Yamaguchi H, Wyckoff J, Condeelis J. (2005) Cell migration in tumors. Current Opinion in Cell Biology. 17(5):559–564.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw