進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0908201715555700
論文名稱(中文) 被動式Q-開關1030-nm全光纖雷射之降低腔內能損技術研究
論文名稱(英文) A study of loss-reduction technologies in passively Q-switched all-fiber 1030-nm Yb-lasers
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 105
學期 2
出版年 106
研究生(中文) 魏子淵
研究生(英文) Tzu-Yuan Wei
學號 Q16041107
學位類別 碩士
語文別 中文
論文頁數 54頁
口試委員 指導教授-蔡宗祐
口試委員-許芳文
口試委員-郭昌恕
口試委員-魏明達
口試委員-林士廷
中文關鍵字 全光纖雷射  模態場不匹配  熱擴張纖核  光纖拉細  自平衡Q與增益切換  Q切換脈衝雷射 
英文關鍵字 all-fiber laser  mode-filed-area mismatch  thermally expanded core  fiber tapering  self-balanced Q- and gain- switching  Q-switched pulse laser 
學科別分類
中文摘要 本論文主要降低被動式Q切換脈衝雷射共振腔損耗為目標,改善的被動式Q切換全光纖脈衝雷射架構,選擇皆為摻鐿的增益介質與可飽和吸收體光纖,利用模態場不匹配技術來達成Q切換效果。在高功率多模雷射源結合雙披覆光纖設置的雙披覆層雷射系統中,腔內能量遠大於使用單模雷射源的架構,導致模態場不匹配熔接點因損耗太高而發生光纖斷裂的現象,且使用市售模態場接合器於雷射架構中,模態場接合器亦會發生損壞,因此論文中分別使用三種方法來解決模態場不匹配問題,分別為火炬熱擴張纖核、電弧熱熔拉法、電弧熱擴張纖核,在利用三種方法製作模態場接合器後,發現運用於高功率脈衝雷射架構之接合器,在製作過程中要避免長時間使用火炬加熱,因火炬邊緣的溫度落差會使光纖脆弱而斷裂。雙披覆層雷射系統會使用光耦合器將雷射源光耦合進披覆層中,然而光耦合器亦是使用火炬進行熔拉製成,因此在本論文中將光耦合器移出共振腔之外,避免脈衝能量過高使耦合器損壞,並減少共振腔中熔接點數量,改善後的雷射架構其脈衝特性將於第五章進行討論,第五章實驗中成功獲得脈衝重複率40 kHz、半高寬65 ns、峰值175 W之Q切換脈衝。
英文摘要 In this thesis, we focus on loss-reduction in passively Q-switched pulse laser, the all-Yb3+ fiber laser was saturable absorber Q-switched at 1030 nm and gain-switched at 1070 nm, using the method of mode-field-area mismatch. Because the use of high-power multi-mode pump laser diode, the cavity energy is much larger than the use of single-mode pump laser diode, so the mode field mismatch point will be broken. When we used the commercially available mode field adapter to solve mode field mismatch loss, it still damaged. Therefore, three methods are used to solve the problem of mode field mismatch loss in this thesis, respectively, for thermally expanded core by torch, fiber tapering by arc and thermally expanded core by arc. After the mode field adapter was fabricated using three methods, it was found that the adapter used in high power pulse laser system must avoid using torch for a long time in the production process due to the temperature difference at torch edge makes fiber fragile. Cladding pumping laser uses combiner to couple the pump beam into cavity, but combiner is also heated by torch in manufacturing process. Therefore, in this thesis, the combiner moved out of the resonant cavity, avoid high pulse energy to damage the combiner and reduce the number of splicing points in the cavity. Finally, with a pump power of 6.9 W, the laser iteratively produced a 1030-nm pulse with a pulse repetition rate of 40 kHz, a FWHM of 65 ns, and a peak power of 175 W.
論文目次 目錄
摘要 I
誌謝 VII
目錄 VIII
圖目錄 X
表目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究方法 3
第二章 Q切換脈衝雷射原理 6
2-1 1030nm雷射原理 6
2-2 被動式Q切換脈衝雷射條件 8
2-2-1 模態場面積不匹配 8
2-2-2 Q切換脈衝持續運作 10
2-3 雙共振腔雷射系統 12
2-3-1 雙共振腔光子雷射方程式 12
2-3-2 雙共振腔架構波長選擇與吸收居量恢復程度 14
第三章 高功率脈衝雷射架構設置與模擬 17
3-1 雙披覆層系統 17
3-2 高功率雷射操作模擬 18
3-2-1 共振腔長度 19
3-2-2 可飽和吸收體長度 20
3-2-3 共振腔反射率 22
第四章 Mode Field Adapter研製 24
4-1 火炬熱擴張纖核法 24
4-1-1 TEC模擬 25
4-1-2 TEC實驗方法與量測 26
4-2 電弧熱熔拉法 30
4-2-1 熱熔拉光纖實驗方法 30
4-2-2 熱熔拉實驗量測 31
4-3 電弧熱擴張纖核法 35
4-3-1 電弧加熱實驗方法 35
4-3-2 電弧熱擴張纖核量測 37
4-4 小結 38
第五章 脈衝雷射性能分析 39
5-1 泵浦能量定義 39
5-2 脈衝特性量測 41
5-2-1 可飽和吸收體25 cm、第一共振腔反射率4% 41
5-2-2 可飽和吸收體25 cm、第一共振腔反射率10% 44
5-2-3 可飽和吸收體45 cm、第一共振腔反射率4% 46
5-2-4 可飽和吸收體45 cm、第一共振腔反射率10% 47
第六章 結論與未來展望 49
6-1 實驗結論 49
6-2 未來展望 50
文獻回顧 51
附錄 53

參考文獻 [1] D. Zalvidea et al., "High-repetition rate acoustic-induced Q-switched all-fiber laser," Optics Communications, vol. 244, no. 1-6, pp. 315-319, 2005.
[2] R. J. Williams, N. Jovanovic, G. D. Marshall, and M. J. Withford, "All-optical, actively Q-switched fiber laser," Optics Express, vol. 18, no. 8, pp. 7714-7723, 2010/04/12 2010.
[3] K. Du, D. Li, H. Zhang, P. Shi, X. Wei, and R. Diart, "Electro-optically Q-switched Nd:YVO4 slab laser with a high repetition rate and a short pulse width," Optics Letters, vol. 28, no. 2, pp. 87-89, 2003/01/15 2003.
[4] S. Kivistö, R. Koskinen, J. Paajaste, S. D. Jackson, M. Guina, and O. G. Okhotnikov, "Passively Q-switched Tm3+, Ho3+-doped silica fiber laser using a highly nonlinear saturable absorber and dynamic gain pulse compression," Optics Express, vol. 16, no. 26, pp. 22058-22063, 2008/12/22 2008.
[5] A. Aubourg, J. Didierjean, N. Aubry, F. Balembois, and P. Georges, "Passively Q-switched diode-pumped Er:YAG solid-state laser," Optics Letters, vol. 38, no. 6, pp. 938-940, 2013/03/15 2013.
[6] Y. F. Chen and Y. P. Lan, "Comparison between c-cut and a-cut Nd:YVO 4 lasers passively Q-switched with a Cr 4+ :YAG saturable absorber," Applied Physics B: Lasers and Optics, vol. 74, no. 4-5, pp. 415-418, 2002.
[7] P. Adel, M. Auerbach, C. Fallnich, S. Unger, H. R. Müller, and J. Kirchhof, "Passive Q-switching by Tm3+co-doping of a Yb3+-fiber laser," Optics Express, vol. 11, no. 21, pp. 2730-2735, 2003/10/20 2003.
[8] A. A. Fotiadi, A. S. Kurkov, and I. M. Razdobreev, "All-fiber passively Q-switched ytterbium laser," in CLEO/Europe. 2005 Conference on Lasers and Electro-Optics Europe, 2005., 2005, p. 515.
[9] A. S. Kurkov, E. M. Sholokhov, and O. I. Medvedkov, "All fiber Yb-Ho pulsed laser," Laser Physics Letters, vol. 6, no. 2, pp. 135-138, 2009.
[10] V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, "Yb-Bi pulsed fiber lasers," Optics Letters, vol. 32, no. 5, pp. 451-453, 2007/03/01 2007.
[11] T.-Y. Tsai, Y.-C. Fang, Z.-C. Lee, and H.-X. Tsao, "All-fiber passively Q-switched erbium laser using mismatch of mode field areas and a saturable-amplifier pump switch," Optics Letters, vol. 34, no. 19, pp. 2891-2893, 2009/10/01 2009.
[12] T.-Y. Tsai, Y.-C. Fang, H.-M. Huang, H.-X. Tsao, and S.-T. Lin, "Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm," Optics Express, vol. 18, no. 23, pp. 23523-23528, 2010/11/08 2010.
[13] T.-Y. Tsai, H.-H. Ma, Y.-C. Fang, H.-X. Tsao, and S.-T. Lin, "Self-balanced Q- and gain-switched erbium all-fiber laser," AIP Advances, vol. 1, no. 3, p. 032155, 2011.
[14] T. Y. Tsai, H. X. Tsao, C. L. Huang, and W. J. Chen, "1590-nm-pumped passively Q-switched thulium all-fiber laser at 1900 nm," Opt Express, vol. 23, no. 9, pp. 11205-10, May 04 2015.
[15] J. Nilsson et al., "High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers," Optical Fiber Technology, vol. 10, no. 1, pp. 5-30, 2004.
[16] X. Zhou, Z. Chen, H. Chen, J. Li, and J. Hou, "Mode field adaptation between single-mode fiber and large mode area fiber by thermally expanded core technique," Optics & Laser Technology, vol. 47, pp. 72-75, 2013.
[17] G. S. Kliros and N. Tsironikos, "Variational analysis of propagation characteristics in thermally diffused expanded core fibers," Optik - International Journal for Light and Electron Optics, vol. 116, no. 8, pp. 365-374, 2005.
[18] H. Chen, Y. Qiu, G. Li, H. Zhang, and Q. Chen, "Improving fiber to waveguide coupling efficiency by use of a highly germanium-doped thermally expanded core fiber," Optics & Laser Technology, vol. 44, no. 3, pp. 679-682, 2012.
[19] X. Zhou, Z. Chen, H. Zhou, and J. Hou, "Mode-field adaptor between large-mode-area fiber and single-mode fiber based on fiber tapering and thermally expanded core technique," Appl Opt, vol. 53, no. 22, pp. 5053-7, Aug 01 2014.
[20] B. S. Wang and E. W. Mies, "Advanced topics on fusion splicing of specialty fibers and devices," 2007, vol. 6781, pp. 678130-678130-14.
[21] J. Kerttula, V. Filippov, V. Ustimchik, Y. Chamorovskiy, and O. G. Okhotnikov, "Mode evolution in long tapered fibers with high tapering ratio," Optics Express, vol. 20, no. 23, pp. 25461-25470, 2012/11/05 2012.
[22] N. Jovanovic, M. Åslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, "Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core," Optics Letters, vol. 32, no. 19, pp. 2804-2806, 2007/10/01 2007.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-07-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-07-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw