進階搜尋


 
系統識別號 U0026-0908201618240100
論文名稱(中文) SeaSonde 高頻測流雷達應用於船舶回波識別與方位判定之研究
論文名稱(英文) Identification and Direction Finding of Ship Echoes with SeaSonde HF Radar
校院名稱 成功大學
系所名稱(中) 海洋科技與事務研究所
系所名稱(英) Institute of Ocean Technology and Marine Affairs
學年度 104
學期 2
出版年 105
研究生(中文) 陳禹儒
研究生(英文) Yu-Ru Chen
學號 NA6034035
學位類別 碩士
語文別 中文
論文頁數 137頁
口試委員 指導教授-莊士賢
口試委員-楊穎堅
口試委員-賴堅戊
口試委員-吳立中
中文關鍵字 高頻雷達  船舶回波  調適性訊號識別  多重訊號分類 
英文關鍵字 high-frequency (HF) radar  ship echoes  adaptive signal identification (ASI)  multiple signal classification (MUSIC) 
學科別分類
中文摘要 專屬經濟海域(EEZ)的船舶活動存在高度複雜性,預防可能伴隨而來的海事安全疑慮是各國海洋事務執行單位的重要職責。因此妥善應用海洋科技儀器,強化區域內即時的船舶動態監控能力成為重要議題。為實現廣闊海域內船舶活動監控之艱鉅任務,高頻雷達的超視距特性能夠有效擴展探測距離,得以勝任長程船舶監控系統的重要角色,並且能與現今海域監控系統進行整合,達到遠近互補之效。迄今臺灣已建立環臺高頻雷達測流系統網絡,現階段主要任務為建構周遭海域的流場資訊。本研究希望在不影響現有流場量測前題下,開發適當的船舶偵測與追蹤技術,增加測流高頻雷達的附加應用價值。
研發高頻雷達船舶訊號識別技術為本研究之主要目標,技術內容分為調適性訊號識別演算法(ASI)及多重訊號分類演算法(MUSIC)方位辨識技術兩大核心。第一部份調適性訊號識別演算法能夠隨環境雜訊的變異而自動調整濾出船舶訊號之閥值,進而從雷達頻譜中萃取出船舶相對於雷達站之距離及徑向速度資訊。第二部分多重訊號分類演算法方位辨識技術承接調適性訊號識別演算法的識別結果,針對篩選出的船舶訊號估測出相對於雷達站之方位角資訊。最後再利用船舶自動辨識系統(AIS)驗證上述船舶動態資訊的正確性,以說明本研發技術的實用性。
本研究運用此技術探討蘇澳高頻雷達測站之連續七筆觀測資料中的六艘船舶之動態追蹤。研究結果證實調適性訊號識別演算法所擷取之船舶訊號與AIS 資料相吻合,能有效且精確地萃取出船舶相對於雷達站之距離及徑向速度資訊。多重訊號演算法應用於船舶方位辨識的結果中,有艘船舶在七筆資料中完整地被追蹤,估測方位角與AIS 實際方位角的平均誤差僅有3 度之差;此外,雷達站針對六艘船舶的估測方位角與AIS 實際方位角的平均誤差為6 度。因此,本文認為所發展之技術已能初步於廣闊的海域中聚焦出船舶確切位置,並掌握其動態資訊,未來可以此為基礎再持續投入相關研究並作業化後,必能即時掌握專屬經濟海域內的船舶動態,以協助海事安全執行單位採取適當後續作為。
英文摘要 Enhancing near-real-time surveillance capability for complex vessel movements within an exclusive economic zone (EEZ) is an important issue for maritime management.
High-frequency (HF) radar’s over the horizon property can effectively extend detection range to cover most of an EEZ area, making it suitable for a long-range vessel
monitoring system. An island-wide HF radar network has been established in Taiwan primarily to monitor ocean surface currents and other oceanic parameters. The purpose of this study is to develop a technique for detecting and tracing vessel echoes using the radar sea returns from HF radar stations without interfering with existing system functions. The proposed technique integrates two algorithms, namely an adaptive signal identification algorithm, which is used to extract ship positions and radial velocity information of ship echoes, and a multiple signal classification algorithm, which is used to retrieve ship bearing information. The ship information retrieved from HF radar data was verified against automatic identification system data. Finally, the accuracy and usefulness of the proposed technique are demonstrated by case studies for the Suao HF radar station.
論文目次 摘要 I
致謝 IX
目錄 XI
表目錄 XV
圖目錄 XVII
符號說明 XXI
第一章 緒論 1
1.1研究背景 1
1.2動機與目的 4
1.3研究流程 4
1.4論文組織 6
第二章 文獻回顧 7
2.1雷達理論背景 7
2.1.1雷達方程式 10
2.1.2調頻連續波 11
2.2 SeaSond高頻雷達測流系統與量測機制 14
2.2.1硬體設備 16
2.2.2原廠資料處理流程 19
2.2.3交錯譜序列的資料結構 21
2.3高頻雷達應用於船舶偵測 25
2.4船舶自動識別系統資訊 28
第三章 研究方法 31
3.1高頻雷達訊號濾波方法 32
3.1.1指數平滑濾波法 32
3.1.2二維中值濾波法 36
3.1.3二維移動平均濾波法 40
3.1.4濾波結果討論 43
3.2調適性訊號識別演算法 44
3.2.1 DC removal及子區域選定 48
3.2.2應用二維移動平均之平滑化處理以進行殘差分析 51
3.2.3建立調適性標準差門檻以篩選船舶訊號 56
3.3 AIS資料交錯比對 59
3.3.1 AIS之船舶動態資訊轉換 59
3.3.2 徑向速度與都卜勒頻移之對應關係與轉換 61
3.4船舶方位判定 ─ 高頻雷達之多重訊號分類演算法 62
第四章 研究結果 71
4.1調適性訊號識別演算法辨識船舶回波 71
4.1.1高頻雷達之船舶回波萃取 73
4.1.2高頻雷達之船舶回波識別 76
4.2雷達之一維都卜勒頻譜的船舶回波資訊分析 92
4.3多重訊號分類演算法估算船舶方位 104
4.4雷達偵測結果與AIS資訊之比較 112
4.4.1船舶相對於蘇澳雷達站之距離比較 112
4.4.2船舶相對於蘇澳雷達站之徑向速度比較 114
4.4.3船舶相對於蘇澳雷達站之方位角比較 116
第五章 結論與建議 117
5.1結論 117
5.2建議 120
5.2.1布拉格波擬合與濾除 120
5.2.2威脅等級評估 121
5.2.3作業化及擴大環臺高頻雷達網絡之應用效能 121
參考文獻 123
附錄 都卜勒單元、都卜勒頻移、及船舶徑向速度對照表 131

參考文獻 [1] Ahmadi, M., Azimi-Sadjadi, M., Gorgui-Naguib, R., King, R., & Kwabwe, A. (2013). Digital Filtering in One and Two Dimensions: Design and Applications: Springer Science & Business Media.
[2] Barrick, D. E. (1973). FM/CW Radar Signals and Digital Processing. Tech. Rep. ERL 283-WPL 26. NOAA, Boulder, Colo, USA.
[3] Barrick, D. E., Isaacson, J., & Kung, P. (2006). SeaSonde Averaging and Ship Removal in CSPro.
[4] Bole, A. G., Wall, A. D., & Norris, A. (2013). Radar and ARPA Manual: Radar, AIS and Target Tracking for Marine Radar Users: Butterworth-Heinemann.
[5] Borrion, H. (2007). Study of Processing Techniques for Radar Non-cooperative Target Recognition (Doctoral dissertation), University of London.
[6] Bruder, J., Carlo, J., Gurney, J., & Gorman, J. (2003). IEEE Standard for Letter Designations for Radar-frequency Bands. IEEE Aerospace & Electronic Systems Society, pp. 1-3.
[7] Chang, S. J. (2004, November). Development and Analysis of AIS Applications as an Efficient Tool for Vessel Traffic Service. OCEANS'04. MTTS/IEEE TECHNO-OCEAN'04. IEEE, pp. 2249-2253.
[8] Chen, J. W., Gao, S., & Bao, Z. (2009, November). Detection of Ships for OTHR Based on AR-MUSIC Algorithm. Wireless Communications & Signal Processing, 2009. WCSP 2009. International Conference on. IEEE, 2009.p p. 1-4.
[9] Chuang, L. Z., Chung, Y.-J., & Tang, S. (2015). A Simple Ship Echo Identification Procedure With SeaSonde HF Radar. Geoscience and Remote Sensing Letters, IEEE, 12(12), pp. 2491-2495.
[10] Chung, Y. J. (2015). Echo Identification of Vessel Activities Using HF Radar and Relevant Threat Evaluation (Unpublished doctoral dissertation). National Cheng Kung University, Tainan.
[11] Chung, Y. J., Chuang, L. Z., & Yang, W. C. (2013, July). Feasibility Studies of Ship Detections Using Seasonde HF Radar. IEEE International Geoscience and Remote Sensing Symposium-IGARSS. IEEE, pp. 2892-2895.
[12] CODAR. (2009). CrossSpectra File Format V5. Retrieved February 19, 2016 from http: //support.codar.com.
[13] CODAR. (2009). CrossLoopPatterner Application Guide. Retrieved February 19, 2016 from http: //support.codar.com.
[14] Crombie, D. D. (1955). Doppler Spectrum of Sea Echo at 13.56 Mc./s. Nature, 175, pp. 681-682.
[15] Cui, X.-r., Zhang, H., & Gulliver, T. A. (2012). Threshold Selection for Ultra-wideband TOA Estimation Based on Neural Networks. Journal of Networks, 7(9), pp. 1311-1318.
[16] Davies, K. (1990). Ionospheric radio. IET.
[17] De Paolo, T., Cook, T., & Terrill, E. (2007, September). Properties of HF Radar Compact Antenna Arrays and Their Effect on the MUSIC Algorithm. OCEANS 2007. IEEE, pp. 1-10.
[18] Desk, E. C. (1997). Electronic Warfare and Radar Systems Engineering Handbook.
[19] Easton, I., & Schriver, R. (2014). Standing Watch: Taiwan and Maritime Domain Awareness in the Western Pacific. 2014 International Conference on New Asian Dynamics and the Role of Taiwan.
[20] Frieden, B. R. (1976, July). A New Restoring Algorithm for the Preferential Enhancement of Edge Gradients. Image processing. International Society for Optics and Photonics, pp. 44-48.
[21] Gebhard, L. A. (1979). Evolution of Naval Radio-Electronics and Contributions of the Naval Research Laboratory. Naval research lab Washington DC.
[22] Glässer, U., Jackson, P., Araghi, A. K., & Shahir, H. Y. (2010, May). Intelligent Decision Support for Marine Safety and Security Operations. Intelligence and Security Informatics (ISI), 2010 IEEE International Conference on. IEEE, pp. 101-107.
[23] Grosdidier, S., & Baussard, A. (2012). Ship Detection Based on Morphological Component Analysis of High-frequency Surface Wave Radar Images. Radar, Sonar & Navigation, IET, 6(9), pp. 813-821.
[24] Gurgel, K. W., Antonischki, G., Essen, H.-H., & Schlick, T. (1999). Wellen Radar (WERA): A New Ground-wave HF Radar for Ocean Remote Sensing. Coastal Engineering, 37(3), pp. 219-234.
[25] Gurgel, K. W., Essen, H.-H., & Kingsley, S. (1999). High-frequency Radars: Physical Limitations and Recent Developments. Coastal Engineering, 37(3), pp. 201-218.
[26] Hammond, T., Pattiaratchi, C., Eccles, D., Osborne, M., Nash, L., & Collins, M. (1987). Ocean Surface Current Radar (OSCR) Vector Measurements on the Inner Continental shelf. Continental Shelf Research, 7(4), pp. 411-431.
[27] Hertz, H., & Kelvin, W. T. B. (1893). Electric waves. London: Macmillan
[28] Holenstein, K., Dobson, C., Roarty, H., Glenn, S., & Barrick, D. E. (2013, September). Bistatic Vessel Detection from the CODAR SeaSonde. 2013 OCEANS-San Diego. IEEE, 2013. pp. 1-5.
[29] Holsten, S. (2009, May). Global Maritime Surveillance with Satellite-based AIS. OCEANS 2009-EUROPE. IEEE, 2009. pp. 1-4.
[30] Huang, X., Wen, B., & Ding, F. (2010). Ship Detection and Tracking Using Multi-frequency HFSWR. IEICE Electronics Express, 7(6), pp. 410-415.
[31] Jayant, N. (1976). Average and Median Based Smoothing Techniques for Improving Digital Speech Quality in the Presence of Transmission Errors. Communications, IEEE Transactions on, 24(9), pp. 1043-1045.
[32] Justusson, B. I. (1981). Median Filtering: Statistical Properties. Two-Dimensional Digital Signal Prcessing II. Springer Berlin Heidelberg, 1981. pp. 161-196
[33] Khan, R., Gamberg, B., Power, D., Walsh, J., Dawe, B., Pearson, W., & Millan, D. (1994). Target Detection and Tracking with a High Frequency Ground Wave Radar. Oceanic Engineering, IEEE Journal of, 19(4), pp. 540-548.
[34] Ko, H. H., Cheng, K. W., & Su, H. J. (2008, October). Range Resolution Improvement for FMCW Radars. Radar Conference, 2008. EuRAD 2008. European. IEEE, 2008. pp. 352-355.
[35] Kundu, A., Mitra, S. K., & Vaidyanathan, P. P. (1984). Application of Two-Dimensional Generalized Mean Filtering for Removal of Impulse Noises from Images. Acoustics, Speech and Signal Processing, IEEE Transactions on, 32(3), pp. 600-609.
[36] Lin, B., & Huang, C.-H. (2006). Comparison Between ARPA Radar and AIS Characteristics for Vessel Traffic Services. Journal of Marine Science and Technology, 14(3), pp. 182-189.
[37] Luhr, D., & Adams, M. (2015). Radar Noise Reduction Based on Binary Integration. Sensors Journal, IEEE, 15(2), pp. 766-777.
[38] Marconi, G. (1922). Radio Telegraphy. American Institute of Electrical Engineers, Journal of the, 41(8), pp. 561-570.
[39] Maresca, S., Greco, M., Gini, F., Grasso, R., Coraluppi, S., & Thomas, N. (2010, May). The HF Surface Wave Radar WERA. Part II: Spectral Analysis of Recorded Data. 2010 IEEE Radar Conference. IEEE, 2010. pp. 969-974.
[40] Maxwell, J. (1873). A Treatise on Electricity and Magnetism. Clarendon press.
[41] Meadows, L. A., Whelan, C., Barrick, D., Kroodsma, R., Ruf, C., Teague, C. C., Wang, S. (2013). High Frequency Radar and Its Application to Fresh Water. Journal of Great Lakes Research, 39, pp. 183-193.
[42] Moutray, R. E., & Ponsford, A. M. (2003, September). Integrated Maritime Surveillance: Protecting National Sovereignty. Radar Conference, 2003. Proceedings of the International. IEEE, 2003. pp. 385-388.
[43] Orfanidis, S. J. (1995). Introduction to Signal Processing: Prentice-Hall, Inc.
[44] Paduan, J. D., & Graber, H. (1997). Introduction to High-frequency Radar: Reality and Myth. Oceanography-washington DC-oceanography society-10, pp. 36-39.
[45] Ponsford, A. M., Sevg, L., & Chan, H. C. (2001). An Integrated Maritime Surveillance System Based on High-frequency Surface-wave Radars. 2. Operational status and system performance. Antennas and Propagation Magazine, IEEE, 43(5), pp. 52-63.
[46] Ponsford, A. T., Souza, I. A., & Kirubarajan, T. (2009, May). Surveillance of the 200 Nautical Mile EEZ Using HFSWR in Association with a Spaced-based AIS Interceptor. Technologies for Homeland Security, 2009. HST'09. IEEE Conference on. IEEE, 2009. pp. 87-92.
[47] Ponsford, T., & Wang, J. (2010). A Review of High Frequency Surface Wave Radar for Detection and Tracking of Ships. Turkish Journal of Electrical Engineering & Computer Sciences, 18(3), pp. 409-428.
[48] Pratt, W. K. (1975). Median Filtering. Image Processing Institute, University of Southern California. Los Angeles, Tech. Rep.
[49] Quesenberry, C. (1988). Introduction to Statistical Quality Control. Technometrics, 30(3), pp. 356-357.
[50] Rabiner, L. R., Sambur, M. R., & Schmidt, C. E. (1975). Applications of a Nonlinear Smoothing Algorithm to Speech Processing. Acoustics, Speech and Signal Processing, IEEE Transactions on, 23(6), pp. 552-557.
[51] Roarty, H. J., Barrick, D. E., Kohut, J. T., & Glenn, S. M. (2010). Dual-use Compact HF Radars for the Detection of Mid and Large Size Vessels. Elektrik, Turkish Journal of Electrical Engineering and Computer Sciences, 18(3), pp. 373-388.
[52] Roarty, H. J., Rivera Lemus, E., Handel, E., Glenn, S. M., Barrick, D. E., & Isaacson, J. (2011). Performance Evaluation of Seasonde High-frequency Radar for Vessel Detection. Marine Technology Society Journal, 45(3), pp. 14-24.
[53] Root, B. T. (1998). HF‐over‐the‐horizon Radar Ship Detection with Short Dwells Using Clutter Cancelation. Radio Science, 33(4), pp. 1095-1111.
[54] Schmidt, R. O. (1986). Multiple Emitter Location and Signal Parameter Estimation. Antennas and Propagation, IEEE Transactions on, 34(3), pp. 276-280.
[55] Sengupta, D. L., & Sarkar, T. K. (2003). Maxwell, Hertz, the Maxwellians, and the Early History of Electromagnetic Waves. Antennas and Propagation Magazine, IEEE, 45(2), pp. 13-19.
[56] Shao, X. (2007). Research on Anti-Transient Interference and Ocean ClutterCancellation Based on OTHR (Doctoral dissertation), Electronic Science and Technology University, Chengdu.
[57] Skolnik, M. I. (1962). Introduction to Radar. Radar Handbook.
[58] Skolnik, M. I. (1970). Radar Handbook.
[59] Smith, M., Roarty, H., Glenn, S., Whelan, C., Barrick, D., & Isaacson, J. (2013, September). Methods of Associating CODAR Seasonde Vessel Detection Data into Unique Tracks. 2013 OCEANS-San Diego. IEEE, 2013.pp. 1-5.
[60] Smith, S. W. (1997). The Scientist and Engineer's Guide to Digital Signal Processing.
[61] Tang, H. (2014). DOA Estimation Based on MUSIC Algorithm.
[62] Tetreault, C. B. J. (2005, September). Use of the Automatic Identification System (AIS) for Maritime Domain Awareness (MDA). I Proceedings of OCEANS 2005 MTS/IEEE. IEEE, 2005. pp. 1590-1594.
[63] Tukey, J. (1974). Nonlinear (nonsuperposable) Methods for Smoothing Data. Congr. Rec. 1974 EASCON, 673.
[64] Veness, C. (2012). Calculate Distance and Bearing Between Two Latitude/Longitude Points Using Haversine Formula in JavaScript. Movable Type Scripts.
[65] Vesecky, J. F., & Laws, K. E. (2010, September). Identifying Ship Echoes in CODAR HF Radar Data: A Kalman Filtering Approach. OCEANS 2010 MTS/IEEE SEATTLE. IEEE, 2010. pp. 1-8.
[66] Wyatt, L. R. (2002). The Potential of HF Radar for Coastal and Shelf Sea Monitoring. Elsevier Oceanography Series, 66, pp. 265-272.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw