進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0908201611555500
論文名稱(中文) 離岸風機支撐結構行為受地震載重之研究
論文名稱(英文) Investigation of offshore wind turbine structure behavior under seismic loads
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 張齊
研究生(英文) Chi-Chang
電子信箱 chrischang1123@gmail.com
學號 N66034132
學位類別 碩士
語文別 英文
論文頁數 98頁
口試委員 指導教授-朱聖浩
口試委員-方中
口試委員-郭志禹
口試委員-徐德修
口試委員-鍾興陽
中文關鍵字 非線性  土壤結構互制  有限元素法  鋼結構設計  桿件力  SHAKE91 
英文關鍵字 Nonlinearity  Soil-structure interaction  Finite element method  Steel structure design  Member force  SHAKE91 
學科別分類
中文摘要 本論文主要目的為考慮土壤之材料行為為非線性之下,以三維有限元素網格模擬土壤-結構互制之行為,並比較土壤為均質情況下砂土與黏土之差異。本論文將使用SHAKE91分析軟體輸入Diamond-Height測站所量測到的加速度資料於岩盤上部位置,作為震源進行分析,再將得到之不同土層振動歷時輸入至土壤網格進行動態分析。論文中以兩種不同之土壤材料作為模擬互制行為之土壤,以得知不同土壤材料行為下對於離岸風機上部結構行為之影響。最後得到風機上部結構之桿件內力,根據現行的API-LRFD離岸風機鋼結構設計規範評估其安全性。在本論文中,使用樑元素模擬基樁和風機上部結構,使用p-y、t-z、Q-z 元素去模擬土壤的行為。除此之外,鋼結構設計之研究也是本論文的重點,包含了張力、壓力、彎矩、剪力、水壓力、組合受力桿件之設計,這些桿件以及土壤元素經過數值與理論的比較,是相互吻合的
英文摘要 The main purpose of this thesis is to perform the soil-structure interaction analysis using the three-dimensional finite element analysis, where the comparison between the finite element results for homogeneous soils including clay and sand are achieved. This study uses SHAKE91 analysis software to transfer seismic accelerations which measured from the top of soil, and then applies the seismic load in the finite element analysis. The seismic load is the acceleration histories in different soil medium which simulated by SHAKE91, and the finite element software performs the integration of these accelerations to displacements for the dynamic analysis. There are two kinds of soil behaviors which are discussed for simulating the interaction behavior in the thesis. From the analyses in the study, the influences of the offshore upper structure behavior caused by the different materials of the soil behavior will be specified. Finally, we will get member forces in the finite element analysis. In the finite element model, beam elements are used to simulate the superstructure and piles, while p-y, t-z, and Q-z elements are used to simulate the soil behavior. This thesis then validates the results of these soil elements with the theoretical results. This thesis also contains the steel design procedures according to the code of the American Petroleum Engineering Institute (API) load resistance factor design (LRFD). The steel design includes tension, compression, bending, shear, hydrostatic, and combined-loading members. The validations of above members are achieved in this study, and all the design procedures are highly accurate.
論文目次 Content
摘要 II
Abstract III
誌謝 IV
List of Tables VII
List of Figures IX
Chapter 1 Introduction 1
1.1 Background and Purpose 1
1.2 Developed of lateral loading analysis for pile 1
1.3 Developed of axial loading analysis for pile 4
1.4 Developed of Finite element method (FEM) 5
1.5 Brief Account of Research 7
Chapter 2 Theory illustration 8
2.1. Introduction 8
2.2. Pile element 8
2.2.1 P-Y element 9
2.2.2 T-Z and Q-Z elements 13
2.3 Wave Propagation theory 15
2.4 Fast Fourier Transform (F.F.T) 16
Chapter 3 Site response analysis 26
3.1 One-dimensional spectrum analysis hypothesis and theory 26
3.2 Analysis Procedure 28
3.3 Shake91 theory model 28
3.4 Earthquake description 29
3.5 Soil model 29
3.6 Simulation results 30
Chapter4 Steel Structural Design 52
4.1 Axial tension member. 52
4.2 Axial compression member 52
4.2.1 Column Buckling 53
4.2.2 Local Buckling 54
4.3 Bending 55
4.4 Shear 56
4.4.1Beam Shear 56
4.4.2 Torsional Shear. 57
4.5 Hydrostatic Pressure 57
4.6 Cylindrical members under combined loads 59
4.6.1 Combined Axial Tension and Bending 59
4.6.2 Combined Axial Compression and Bending. 60
4.6.3 Combined Axial Tension, Bending and Hydrostatic Pressure 61
4.6.4 Combined Axial Compression, Bending and Hydrostatic Pressure 61
4.7 The introduction of subprogramWdesign.f90 62
Chapter 5 Structure analysis 76
5.1. Programs for Finite Element Analysis 76
5.1.1 Windturb program 76
5.1.2 Mmm program 77
5.1.3 AB program 77
5.1.4 AN program 77
5.1.5 AD program 77
5.2 Simulation results 78
Chapter 6 Conclusions and Future Works 87
6.1 Conclusions 87
6.2 Future Works 88
Reference 89
Appendix 91

參考文獻 1. American Petroleum Institute (1987), “Recommended practice for planning, designing and constructing fixed offshore platforms,” API Recommended Practice 2A (RP-2A), 17th edition
2. Baguelin, F., Frank, R., and Said, Y.H. (1977), “Theoretical study of lateral reaction mechanism of piles,” Geotechnique, Vol. 28, No.3, pp.405-434
3. Coylc, H.M. and Sulaiman, I. H. (1967), “Skin Friction for Steel Piles in Sand,” J. of the Soil Mech. And Found. Div, ASCE, Vol. 93, No.6, Jan., pp.261-278
4. Coylc, H.M. and Reese, L.C. (1967), “Load Transfer for Axially Loaded Piles in Clay,” J. of the Soil Mech. And Found. Div, ASCE, Vol.92, No.1, Jan., pp.1-26
5. Desai. C.S. (1974), “Numerical Design Analysis for piles in Sand,” J of the Geot. Eng. Div., ASCE, Vol.100, No.6, pp.613-635
6. DNV-OS-J101 (2011), Design of Offshore Wind Turbine Structures. Offshore Standard, Det Norske Veritas, Norway
7. Fan, C.C. (1996), “the Behavior of Laterally Loaded Single Piles and Group Piles in Sand,” Ph.D. Thesis, University of Illinois at Urbana-Champaign
8. Hadjian, A.H., R.B. Fallgren M.R. Tufenkijian (1992), “Dynamic soil-pile-structure interaction,” the state of the practice. Piles Under Dynamic Loads, S. Prakash (ed), ASCE (Geotechnical Special Publication 34):1-26
9. Kraft, L.M. Jr., Ray, R.P. and Kagawa, T. (1981), “Theoretical t-z Curves,” J. of the Geot. Eng. Div., ASCE, Vol.107, No. 11, Nov., pp.1543-1561
10. Poulus, H.G. and Davis. E.M. (1968), “The Settlement Behavior of Single Axially-Loaded Piles and Piers,” Geotechnique, Vol. 18.
11. Reese, L.C. and Wang, S.T. (1989), “Documentation of Computer Program LPILE,” Ensoft, Inc. Astin, Texas
12. Seed, H.B., and Reese, L.C. (1957), “The Action of Soft Clay Along Friction Piles,” Trans. ASCE, Vol.122, pp. 731-734
13. Trochanis, A.M., Bielak, J. and Christiano, P. (1991) “Three-dimensional nonlinear study of piles,” Journal of Geotechnical Engineering, ASCE, Vol.117, No.3, pp.429-447.
14. 王訓濤,周南山 (1988),承受側向力之樁基與土壤之互制作用,地工技術雜誌,第24 期,第39-48頁
15. 洪世勳 (1996),場鑄群樁側向荷重-位移分析,國立台灣工業技術學院碩士論文
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-12-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw