
系統識別號 
U00260908201516484300 
論文名稱(中文) 
應用於生醫及背光源之電源轉換晶片設計 
論文名稱(英文) 
Design of Power Conversion Chips for Biomedical and Backlighting Applications 
校院名稱 
成功大學 
系所名稱(中) 
電機工程學系 
系所名稱(英) 
Department of Electrical Engineering 
學年度 
103 
學期 
2 
出版年 
104 
研究生(中文) 
施銘憲 
研究生(英文) 
MingHsien Shih 
學號 
N28951489 
學位類別 
博士 
語文別 
英文 
論文頁數 
66頁 
口試委員 
指導教授魏嘉玲 召集委員王鴻猶 口試委員劉濱達 口試委員張順志 口試委員蔡建泓 口試委員賴俊如

中文關鍵字 
切換電容式
電荷泵浦
升降壓型電源轉換器
LED驅動器
LED背光源

英文關鍵字 
Switchedcapacitor DCDC converter
chargepump
stepup/stepdown voltage conversion
LED driver
and LED backlight

學科別分類 

中文摘要 
近年來可攜式電子產品的使用越來越普及，因此如何延長可攜式電子產品的使用時間已是目前最需要解決的問題之一。本論文將針對一些低功耗的可攜式電子產品（例如：血壓計與可穿戴設備等等)之電源管理晶片做深入研究，研究主軸分為兩個部分。
第一部分為低功耗電子系統電路的電源轉換器設計，其輸入電壓為1.8–5Ｖ，輸出電壓為3.3Ｖ，利用ㄧ升降壓型切換電容式電荷泵浦來實現。系統的穩定性則利用average space的分析方法加以探討並以切換電容架構來實現晶片內建補償器。所使用的製程為台灣積體電路公司0.35μm 2P4M 5V混合訊號製程，使用的晶片面積為1.56x1.47mm2，線性調節率為64mV/V，負載調節率為0.793mV/mA。第二部分為數據監視器的背光源控制器設計，利用RGBLED三原色來調節監視器的背光。實現的方法主要使用一切換式升壓轉換器與一電流平衡器來完成。所使用的製程為台灣積體電路公司0.25μm BCD 1P5M高壓混合訊號製程，使用的晶片面積為1.9x1.7mm2。輸入電壓為8–12Ｖ，輸出電壓分別為13.5Ｖ(RLED)、 20Ｖ(GLED)、 21.5Ｖ(BLED)。

英文摘要 
In recent years, portable electronic products become increasingly popular. Hence, how to prolong the service time of portable electronic products is one of the most important issues. This dissertation focuses on the design of power management chips for lowpower portable electronics, such as sphygmomanometers and wearable devices, and it is mainly composed of two topics.
The first topic is the design of a power converter for a lowpower portable electronics, and the proposed switchedcapacitor converter can work with the input voltage ranging from 1.8 V to 5V. Because the output voltage is set to 3.3V, it is actually a step up/down converter. Besides, the stability of the proposed converter is analyzed by use of average space analysis method. Furthermore, its compensator is builtin and implemented by using switchedcapacitor circuits. The chip was implemented by using the TSMC 0.35μm 2P4M 5V mixedsignal polycide process, and the chip area is 1.56x1.47mm2. Its line regulation is 64 mV/V, and its load regulation is 0.793 mV/mA. The second topic is the design of a boost converter for driving the RGBLEDs, which are used as the backlight of the monitor. A current balancer circuit is also included in the proposed chip, which was fabricated by using the 0.25μm TSMC BCD 60V technology, and its area is 1.9 × 1.7 mm2. The input voltage is 8  12V, and the output voltages can be 13.5V (RLED), 20V (GLED), or 21.5V (BLED).

論文目次 
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Dissertation Architecture 2
Chapter 2 Bandgap Reference Circuit Techniques 3
2.1 Design of Bandgap Circuits 3
2.2 Measured Results 9
2.3 Summary 15
Chapter 3 SwitchedCapacitor DCDC Converter for Biomedical Applications 16
3.1 SwitchedCapacitor DCDC Converter Topologies 16
3.2 Block Diagram and Main Circuits 16
3.2.1 TripleMode SC Power stage 17
3.2.2 Mode Selector 24
3.2.3 Feedback Circuit 25
3.2.4 InputVoltageIndependent Clock Generator 31
3.2.5 CurrentMode Bandgap Reference Circuit 32
3.3 Measured Results 33
3.3.1 InputVoltageIndependent Clock Generator 33
3.3.2 System Performance 34
3.4 Summary 40
Chapter 4 Boost DCDC Converter for RGBLED Backlight Application 42
4.1 Controlling methods of LED drivers 42
4.2 Block Diagram and Main Circuits 44
4.2.1 Low Dropout Linear Voltage Regulator (LDO) 44
4.2.2 Bandgap Reference Circuit 45
4.2.3 Current Balancing Circuit 49
4.2.4 PSM controller 51
4.3 Measured Results 52
4.4 Summary 54
Chapter 5 Conclusions and Future Work 55
5.1 Conclusions 55
5.2 Recommendations of Future Work 56
References 57
List of publication 65

參考文獻 
[1] C. L. Chiu and K. H. Chen, “A High Accuracy CurrentBalanced Control Technique for LED Backlight,” in Proc.IEEE Power Electronics Specialists Conference, 2008, pp. 4202–4206.
[2] W. Y. Leung, T. Y. Man, and M. Chan, “A HighPowerLED Driver with PowerEfficient LEDCurrent Sensing Circuit,” in Proc. IEEE SolidState Circuits Conference, 2008, pp. 354–357.
[3] C. H. Liu, C. Y. Hsieh, Y. C. Hsieh, T. J. Tai, and K. H. Chen, “SARControlled Adaptive OffTime Technique Without Sensing Resistor for Achieving High Efficiency and Accuracy LED Lighting System,” IEEE Trans. Circuits Systs. I, vol. 57, pp. 1384–1394, June 2010.
[4] B. Razavi, Design of Analog CMOS Integrated Circuits, Chap 11. New York: Mc GrawHill, 2001.
[5] K. N. Leung and P. K. T. Mok, “A Sub1V 15ppm/°C CMOS Bandgap Voltage Reference without Requiring Low Threshold Voltage Device,” IEEE J. SolidState Circuits, vol. 37, pp. 526–530, April 2002.
[6] H. Aminzadeh, R. Lotfi, and K. Mafinezhad, “LowDropout Voltage Reference: an Approach to LowTemperatureSensitivity Architectures with High Drive Capability,” Electronics Letters, vol. 45, pp. 1200–1201, November 2009.
[7] P. H. Huang, H. Lin, and Y. T. Lin, “A Simple Subthreshold CMOS Voltage Reference Circuit with ChannelLength Modulation Compensation,” IEEE Trans. Circuits Syst. II, vol. 53, pp. 882–885, September 2006.
[8] G. D. Vita and G. Iannaccone, “A Sub1V, 10ppm/°C, Nanopower Voltage Reference Generator,” IEEE J. SolidState Circuits, vol. 42, pp. 1536–1542, July 2007.
[9] Y. H. Lam and W. H. Ki, “CMOS Bandgap References with SelfBiased Symmetrically Matched CurrentVoltage Mirror and Extension of Sub1V Design,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, pp. 857–865, June 2010.
[10] C. J. Liang, C. C. Chung, and H. Lin, “A LowVoltage BandGap Reference Circuit with SecondOrder Analyses,” International Journal of Circuit Theory and Applications, vol. 39, pp. 1247–1256, July 2011.
[11] A. Tsitouras, F. Plessas, M. Birbas, J. Kikidis, and G. Kalivas, “A sub1V supply CMOS voltage reference generator,” International Journal of Circuit Theory and Applications, vol. 40, pp. 745–758, February 2012.
[12] B. Amtzen and D. Maksimovic, “SwitchedCapacitor DC/DC Converters with Resonant Gate Drive,” IEEE Trans. Power Electronics, vol. 13, pp. 892–902, September 1998.
[13] F. Zhang, L. Du, F. Z. Peng, and Z. Qian, “A New Design Method for HighPower HighEfficiency SwitchedCapacitor DC–DC Converters,” IEEE Trans. Power electronics, vol. 23, pp. 832–840, March 2008.
[14] M. D. Seeman and S. R. Sanders, “Analysis and Optimization of SwitchedCapacitor DC–DC Converters,” IEEE Trans. Power electronics, vol. 23, pp. 841–851, March 2008.
[15] F. Su, W. H. Ki, and C. Y. Tsui, “Regulated SwitchedCapacitor Doubler with Interleaving Control for Continuous Output Regulation,” IEEE J. SolidState Circuits, vol. 44, pp. 1112–1120, April 2009.
[16] M. H. Shih and C. L. Wei, “Design of a WideInputRange DCDC Converter with SwitchedCapacitor Technique,” in Proc. IEEE Green Circuit and Syst. Conf.(ICGCS), 2010, pp. 504–507.
[17] AS1301 Datasheet, 5V/50mA Low Noise Inductorless Boost Converter, Austriamicrosystems.
[18] Y. H. Chang, “VariableConversionRatio SwitchedCapacitorVoltage Multiplier/Divider DCDC Converter,” IEEE Trans. Circuits Systs. I, vol. 58, pp. 1944–1957, August 2011.
[19] C. Zheng, L. Su, and D. Ma, “A Systematic USFG Design Approach for Integrated Reconfigurable SwitchedCapacitor Power Converters,” IEEE Trans. Circuits Systs. I, vol. 58, pp. 2790–2800, November 2011.
[20] S. V. Cheong, H. Chung, and A. Ioinovici, “Inductorless DCtoDC Converter with High Power Density,” IEEE Trans. Ind. Electron., vol. 41, pp. 208–215, April 1994.
[21] S. V. Cheong, S. H. Chung, and A. Ioinovici, “Development of Power Electronics Converters Based on SwitchedCapacitor Circuits,” in Proc. IEEE Int. Symp. Circuits Systems, 1992, pp. 1907–1910.
[22] J. Han, A. von Jouanne, and G. C. Temes, “A New Approach to Reducing Output Ripple in SwitchedCapacitorBased StepDown DCDC Converters,” IEEE IAS, vol. 2, pp. 1115–1120, October 2004.
[23] S. Bin, Y. Yujia, W. Ying, and H. Zhiliang,” High Efficiency, Inductorless StepDown DC/DC Converter,” IEEE ASICON 2005, vol. 1, pp. 395–398, October 2005.
[24] M. S. Makowski, “Realizability Conditions and Bounds on Synthesis of SwitchedCapacitor DC–DC Voltage Multiplier Circuits,” IEEE Trans. Circuits Syst. I, vol. 44, pp. 684–691, August 1997.
[25] J. A. Starzyk, Y. W. Jan, and F. Qiu, ”A DCDC Charge Pump Design Based on Voltage Doublers,” IEEE Trans. Circuits Syst. I, vol. 48, pp. 350–359, March 2001.
[26] F. Qiu, J. A. Starzyk, and Y. W. Jan, “Analog VLSI Design of MultiPhase Voltage Doublers with Frequency Regulation,” in Proc. IEEE MSSMSD 1999, pp. 9–14, 1999.
[27] J. Han, A. Jouanne, and G. C. Temes, “A New Approach to Reducing Output Ripple in SwitchedCapacitorBased StepDown DCDC Converters,” IEEE Trans. on Power Electronics, vol. 21, pp. 1548–1555, November 2006.
[28] H. S. H. Chung, S. Y. Hui, and S. C. Tang, “Development of a Multistage CurrentControlled SwitchedCapacitor StepDown DC/DC Converter with Continuous Input Current,” IEEE Trans. Circuits Systs. I, vol. 47, pp. 1017–1025, July 2000.
[29] O. C. Mak, Y. C. Wong, and A. Ioinovici, “Stepup DC Power Supply Based on a SwitchedCapacitor Circuit,” IEEE Trans. Ind. Electron., vol. 42, pp. 90–97, February 1995.
[30] H. S. H. Chung, “Design and Analysis of a SwitchedCapacitorBased Stepup DC/DC Converter with Continuous Input Current,” IEEE Trans. Circuits Systs. I, vol. 46, pp. 722–730, June 1999.
[31] B. R. Gregoire, “A Compact SwitchedCapacitor Regulated Charge Pump Power Supply,” IEEE J. SolidState Circuits, vol. 41, pp. 1944–1953, August 2006.
[32] C. L. Wei, C. H. Wu, L. Y. Wu, and M. H. Shih, “An Integrated StepUp/ StepDown DCDC Converter Implemented with SwitchedCapacitor Circuits,” IEEE Trans. Circuits Syst. II, vol. 57, pp. 813–817, October 2010.
[33] C. L. Wei, L. Y. Wu, H. H. Yang, C. H. Tsai, B. D. Liu, and S. J. Chang, “A Versatile StepUp/StepDown SwitchedCapacitorBased DCDC Converter,” IEICE Trans. Electron, vol. E91C, pp. 809–812, May 2008.
[34] C. K. Tse, S. C. Wong, and M. H. L. Chow, “On Lossless SwitchedCapacitor Power Converters,” IEEE Trans. Power Electronics, vol. 10, pp. 286–291, May 1995.
[35] A. Ioinovici, H. S. H. Chung, M. S. Makowski, and C. K. Tse, “Comments on “Unified Analysis of SwitchedCapacitor Resonant Converters,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 684–685, Feb. 2007.
[36] C. K. Cheung, S. C. Tan, Y. M. Lai and C. K. Tse, “A New Visit to an Old Problem in SwitchedCapacitor Converters,” in Proc. IEEE Int. Symposium on Circuit and Syst.(ISCAS’10), 2010, pp. 3192–3195.
[37] R. D. Middlebrook and S. Cuk, “A General Unified Approach to Modelling SwitchingConverter Power Stages,” in Proc. IEEE Power Electron. Spec. Conf. (PESC’76), 1976, pp. 18–34.
[38] T. Tanzawa and T. Tanaka, “A Stable Programming Pulse Generator for Single Power Supply Flash Memories,” IEEE J. SolidState Circuits, vol. 32, no. 6, pp. 845–851, 1997.
[39] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd Ed. Oxford University Press, Inc., 2002.
[40] C. L. Wei and H. H. Yang, “Analysis and Design of a StepDown SwitchedCapacitorBased Converter for LowPower Application,” in Proc. IEEE Int. Symposium on Circuit and Syst.(ISCAS’10), 2010, pp. 1384–1387.
[41] S. BenYaakov and M. Evzelman, “Generic and Unified Model of Switched Capacitor Converters”, in Proc. IEEE Energy Conversion Congress and Exposition (ECCE’09), 2009, pp. 3501–3508.
[42] X. Zhang and H. Lee, “An EfficiencyEnhanced AutoReconfigurable 2×/3× SC Charge Pump for Transcutaneous Power Transmission,” IEEE J. SolidState Circuits, vol. 45, pp. 1906–1922, September 2010.
[43] M. H. Huang, P. C. Fan, and K. H. Chen, “LowRipple and DualPhase Charge Pump Circuit Regulated by SwitchedCapacitorBased Bandgap Reference,” IEEE Trans. Power electronics, vol.24, pp. 1161–1172, May 2009.
[44] L. Su, D. Ma, and A. P. Brokaw, “Design and Analysis of Monolithic StepDown SC Power Converter with Subthreshold DPWM Control for SelfPowered Wireless Sensors,” IEEE Trans. Circuits Systs. I, vol. 57, pp. 280–290, January 2010.
[45] J. Hasan and S. Ang, “A HighEfficiency Digitally Controlled RGB Driver for LED Pixels,” IEEE Trans. Industry Applications, vol. 47, pp. 2422–2429, November 2011.
[46] C. Y. Hsieh and K. H. Chen, “Boost DCDC Converter With Fast Reference Tracking (FRT) and ChargeRecycling (CR) Techniques for HighEfficiency and LowCost LED Driver,” IEEE J. SolidState Circuits, vol. 44, pp. 2568–2580, September 2009.
[47] C. Y. Hsieh, C. Y. Yang, and K. H. Chen, “A ChargeRecycling BuckStore and BoostRestore (BSBR) Technique With Dual Outputs for RGB LED Backlight and Flashlight Module,” IEEE Trans. Power Electronics, vol. 24, pp. 1914–1925, August 2009.
[48] Y. Y. Lin, J. Zhang, X. C. Zou, and W. Li, “An EfficiencyEnhanced Low Dropout Linear HB LED Driver for Automotive Application,” in Proc. IEEE International Conference on Electron Devices and SolidState Circuits, 2008, pp. 1–4.
[49] D. H. Nguyen, J. Hasan, and S. S. Ang, “A BuiltIn SelfTest HighCurrent LED Driver,” in Proc. IEEE 8th International Conference on ASIC (ASICON '09), 2009, pp. 340–343.
[50] M. Doshi and R. Zane, “Control of SolidState Lamps Using a Multiphase Pulsewidth Modulation Technique,” IEEE Trans. Power Electronics, vol. 25, pp. 1894–1904, July 2010.
[51] Y. Hu and M. M. Jovanovic, “LED Driver With SelfAdaptive Drive Voltage,” IEEE Trans. Power Electronics, vol. 23, pp. 3116–3125, November 2008.
[52] W. R. Liou, C. Y. Lin, T. H. Chen, and W. B. Lacorte, “MultiChannel Constant Current LED Driver With Temperature and Voltage Compensation,” in Proc. IEEE Int. Conference on Communications, Circuits and Syst.(ICCCAS), 2010, pp. 527–531.
[53] Y. Wang, M. Gao, and D. Guo, “Design of 16bits ConstantCurrent LED Driver,” in Proc. IEEE Int. Conference on AntiCounterfeiting Security and Identification in Communication(ASID), 2010, pp. 53–56.
[54] C. L. Wei and M. H. Shih, “Design of a SwitchedCapacitor DCDC Converter with a Wide Input Voltage Range,” IEEE Trans. Circuits Syst. I, vol. 60, pp. 1648–1656. June 2013.

論文全文使用權限 
同意授權校內瀏覽/列印電子全文服務，於20160818起公開。同意授權校外瀏覽/列印電子全文服務，於20200818起公開。 


