進階搜尋


 
系統識別號 U0026-0908201310455600
論文名稱(中文) 熱電模組發電系統用最大功率追蹤電能轉換器之研製
論文名稱(英文) Design and Implementation of MPPT Power Converter for Thermoelectric Generation System
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 張鴻彬
研究生(英文) Hong-Bin Zhang
學號 VE6002075
學位類別 碩士
語文別 中文
論文頁數 93頁
口試委員 指導教授-李嘉猷
口試委員-張簡樂仁
召集委員-高瑞棋
口試委員-吳調原
中文關鍵字 熱電發電模組  最大功率追蹤  昇壓型直流-直流轉換器 
英文關鍵字 TEM  MPPT  boost dc-dc converter 
學科別分類
中文摘要 本論文針對熱電發電模組提出最大功率追蹤之方法。目前熱電發電系統多引用太陽能電池的最大功率追蹤方法,但太陽能電池與熱電模組的輸出曲線和發電特性並不完全相同。本研究所提出之最大功率追蹤器利用熱電發電模組的等效電路模型,再藉由阻抗匹配的原理研發針對熱電模組的最大功率追蹤方法,並研析熱電模組之串並聯對應不同溫度之關係以提出最合適最大功率電能轉換器系統架構。最大功率追蹤方法使用微控制器,搭配昇壓型直流-直流轉換器的電路架構等周邊硬體電路實現。其追蹤方法為利用所提出的演算法計算出熱電模組的等效內阻,再藉由調整昇壓型直流-直流轉換器的導通率,使得輸入轉換器之電壓除以電流等同於熱電模組的等效內阻,因而達到阻抗匹配的目的。此方法相較於太陽能電池的追蹤方式,能更精準且有效的預知熱電輸出最大功率點位置,並使熱電模組的輸出操作於最大功率點上。
英文摘要 This thesis proposes a maximum power point tracking (MPPT) method for the thermoelectric generator modules (TEMs). The MPPT methods from PV systems are generally applied to the MPPT converter for TEMs, but the characteristic curves of TEM and solar cell are not totally the same. The proposed MPPT converter is based on the physical property of TEM. The equivalent circuit model of TEM can be used by the impedance matching theory to realize MPPT control. The relation of TEMs interconnection with temperature gradient has been studied and analyzed, so that we could propose the most appropriate MPPT converter system structure. The proposed MPPT converter is composed of a boost dc-dc converter, a microcontroller and peripheral circuit to implement the MPPT method of TEMs. The algorithm is to calculate the TEMs internal impedance, and adjust the duty ratio of the boost dc-dc converter, to make the input impedance equal to the TEM internal impedance. Compare to the PV MPPT methods, this method produces more accurate and effective prediction of the optimized point.
論文目次 中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 4
1-2-1 熱電材料目前發展 4
1-2-2 熱電模組相關應用 7
1-3 研究方法 8
1-4 論文大綱 9
第二章 熱電發電系統探討 10
2-1 熱電效應 10
2-2 熱電模組原理與等效電路 11
2-3 熱電模組用最大功率追蹤轉換器 18
2-3-1 Kajikawa功率調節器 18
2-3-2 R. Kim與J. Lai雙級熱電充電系統 20
2-3-3 R. Kim與J. Lai單級熱電充電系統 22
2-3-4 S. Kim使用開路電壓法類比最大功率追蹤器 23
2-3-5 S. Kim使用增益峰值法類比最大功率追蹤器 24
2-4 既有最大功率追蹤方法分析 26
2-4-1 擾動觀察法原理與分析 29
2-4-2 增量電導法原理與分析 32
2-4-3 定電壓追蹤法原理與分析 34
2-4-4 開路電壓法原理與分析 35
2-4-5 短路電流法原理與分析 36
2-4-6 實際量測法原理與分析 37
2-5 熱電發電系統架構 38
第三章 熱電系統最大功率傳輸 41
3-1 最大功率傳輸原理 41
3-2 直流-直流轉換器 43
3-3 提出之演算法流程 47
3-4 溫差分佈對於熱電發電系統之影響 49
第四章 系統軟硬體設計 53
4-1 前言 53
4-2 系統硬體電路設計 54
4-2-1 功率級電路架構 54
4-2-2 最大功率追蹤轉換器並聯架構分析 55
4-2-3 功率級電路元件設計 58
4-2-4 電壓電流感測電路 59
4-2-5 閘極驅動電路 61
4-3 微控制器介紹 62
4-3-1 PIC18F4520微控制器簡介 62
4-3-2 微控制器電路設計及線路圖 63
4-3-3 程式動作流程 64
第五章 電路模擬與實驗結果 68
5-1 前言 68
5-2 熱電模組之架設 68
5-3 熱電模組輸出曲線量測 70
5-4 系統規格與硬體電路 72
5-5 SIMPLIS電路模擬 74
5-6 實驗波形量測與討論 77
第六章 結論與未來研究方向 86
6-1 結論 86
6-2 未來研究方向 87
參考文獻 88
參考文獻 [1] 台灣電力公司-電源結構與能源配比,“http://info.taipower.com.tw/info2/index.html.”
[2] 經濟部能源局-節能減碳技術績優廠商暨典型案例,“http://www.go-moea2.tw/example.asp.”
[3] 中國鋼鐵公司,“熱電材料之應用與發展”,半月刊科技新知文稿,2008年。
[4] J. C. Bass, N. Elaner, S. Ghamaty, V. Jovanovic, and D. Krommenhoek, “High efficiency quantum well thermoelectric for waste heat power generation,” Hi-Z Technol. Inc., 2010.
[5] 黃振東、徐振庭,“熱電材料”,科學發展,486期,2013年。
[6] 東莞市錮康金屬公司,“http://www.dggukang.com.”
[7] 中國電力百科全書,“http://210.77.86.51/refbook.”
[8] Softpedia - Thermoelectric Materials Will Improve Fuel Efficiency, “http://news.softpedia.com/newsImage/Thermoelectric-Materials-Will-Improve-Fuel-Efficiency-2.jpg.”
[9] 藍眼科技,“http://www.blueeyes.com.tw.”
[10] 裕鼎焚化廠,“http://www.mfec.com.tw.”
[11] 台灣地質知識服務網,“http://twgeoref.2002.moeacgs.gov.tw.”
[12] A. F. Ioffe, Semiconductors thermoelements and thermoelectric cooling. London, U.K.: Infoserch Limited, 1957.
[13] D. M. Rowe, “Thermoelectrics, an environmentally-friendly source of elec¬tri¬cal power,” Renewable Energy, vol. 16, no. 1-4, pp. 1251-1256, 1999.
[14] 朱旭山,“熱電材料與元件之發展與應用”,工業材料雜誌,220 期,第93-103頁,2005年。
[15] T. Kajikawa and T. Onishi, “Development for advanced thermoelectric conversion systems,” in Proc. IEEE ICT, 2007, pp. 322-330.
[16] A. Killander and J. C. Bass, “A stove-top generator for cold areas,” in Proc. IEEE ICT, 1996. pp. 390–393.
[17] R. Mahmudur and S. Roger, “Thermoelectric power-generation for battery charging,” in Proc. IEEE EMPD, 1995. pp. 186-191.
[18] J. G. Haidar and J. I. Ghogel, ”Waste heat recovery from the exhaust of low power diesel engine using thermoelectric generators,” in Proc. ICT, 2001, pp. 413-417.
[19] H. Nagayoshi, T. Nakabayashi, H. Maiwa, and T. Kajikawa, “Development of 100-W high efficiency MPPT power conditioner and evaluation of TEG system with battery load,” J. Electron. Mater., vol. 40, no. 5, pp. 657-661, 2011.
[20] H. Nagayoshi, “Comparison of maximum power point control methods for thermoelectric power generator,” in Proc. IEEE ICT, 2002, pp. 450-453.
[21] H. Nagayoshi and T. Kajikawa, “Mismatch power loss reduction on thermoelectric generator systems using maximum power point trackers,” in Proc. IEEE ICT, 2006, pp. 210-213.
[22] R. Kim and J. Lai, “A seamless mode transfer maximum power point tracking controller for thermoelectric generator applications,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2310 - 2318, 2008.
[23] R. Kim, J. Lai, B. York, and A. Koran, “Analysis and design of maxi-mum power point tracking scheme for thermoelectric battery energy stor¬age system,” IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3709-3716, 2009.
[24] K. K. Win, S. Dasgupta, and S.K. Panda, “An optimized MPPT circuit for thermoelectric energy harvester for low power applications,” in Proc. IEEE ICPE&ECCE, 2011, pp. 1579-1584.
[25] L. Ni, L. Rosendahl, L. Zhang, Y. Xing, and M. Chen, “A Power con-dition¬ing system for thermoelectric generator based on inter¬leaved boost converter with MPPT control,” in Proc. IEEE ICEMS, 2011, pp. 1-6.
[26] J. Gao, K. Sun, L. Ni, M. Chen, Z. Kang, Li Zhang, Y. Xing and J. Zhang “A thermoelectric generation system and its power electronics stage,” J. Electron. Mater., vol. 41, no. 6, pp. 1043-1050, 2012.
[27] J. Zhu, J. Gao, M. Chen, J. Zhang, Q. Du, L. A. Rosendahl, and R. O. Suzuki, “Experimental study of a thermoelectric generation system,” J. Electron. Mater., vol. 40, no. 5, pp. 744-752, 2011.
[28] S. Kim, S. Cho, N. Kim, N. Baatar, and J. Kwon, “A digital coreless maximum power point tracking circuit for thermoelectric generators,” J. Electron. Mater., vol. 40, no. 5, pp. 867-872, 2011.
[29] J. Park and S. Kim, “Maximum power point tracking controller for thermoelectric generators with peak gain control of boost DC-DC converters,” J. Electron. Mater., vol. 41, no. 6, pp. 1242-1246, 2012.
[30] D. Mitrani, A. Tome, J. Salazar, A. Turo, M. Garcia, and J. Charvez, “Methodology for extracting thermoelectric module parameters,” IEEE Trans. Instrum. Meas., vol. 54, no. 4, pp. 1548-1552, 2005.
[31] M. E. Talaat, “Electric analog of thermoelectric generators,” Adv. Energ. Convers., vol. 2, pp. 167-176, 1962.
[32] J. A. Chavez, J. A. Ortega, J. Salazar, A. Turb, and M. J. Garcia, “Spice model of thermoelectric elements including thermal effects,” in Proc. IEEE IMTC, 2000, pp. 1019-1023.
[33] S. Lineykin and S. Ben-Yaakov, “Analysis of thermoelectric coolers by a SPICE-compatible equivalent circuit model,” IEEE Power Electron. Lett., vol. 3, no. 2, pp. 63-66, 2005.
[34] M. Chen, I. Bach, L. A. Rosendahl, T. Condra, and J. K. Pedersen, “Multi-physics simulation of thermoelectric generators through numerically modeling,” in Proc. IEEE ICT, 2007, pp. 300-305.
[35] S. Lineykin and S. Ben-Yaakov, “Modeling and analysis of thermoelectric modules,” IEEE Trans. Ind. Appl., vol. 43, no. 2, pp. 505-512, 2007.
[36] M. Chen, L. Rosendahl, T. Condra, and J. K. Pedersen, “Numerical modeling of thermoelectric generators with varying material properties in a circuit simulator,” IEEE Trans. Energ. Convers., vol. 24, no. 1, pp. 112-124, 2009.
[37] M. Chen, J. Gao, Z. Kang, J. Zhang, Q. Du, and R. Suzuki, “Design methodology of large-scale thermoelectric generation: A hierarchical modeling approach in SPICE,” in Proc. IEEE IAS, 2011, pp. 1-7.
[38] G. Liang, J. Zhou, and X. Huang, “Analytical model of parallel thermoelectric generator” Appl. Energy, vol. 88, no. 12, pp. 5193-5199.
[39] L. Chen, D. Cao, Y. Huang, and F. Z. Peng, “Modeling and power conditioning for thermoelectric generation,” in Proc. IEEE PESC, 2008, pp. 1098-1109.
[40] 徐振庭,熱電能源產生器於廢熱再生能源之應用,國立清華大學奈米工程與微系統研究所博士論文,2011年。
[41] Power-management functions for energy harvesting, “http://www.eetimes.com/design/power-management-design/4234038/Power-management-functions-for-energy-harvesting”
[42] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, 2005.
[43] 蔡榮哲,熱電半導體發電系統最佳化設計與控制,國立台灣大學工學院機械工程學系碩士論文,2010年。
[44] A. W. Leedy, L. Guo, and K. A. Aganah, “A constant voltage MPPT method for solar powered boost converter with dc motor load,” in Proc. IEEE Southeastcon, 2012, pp. 1-6.
[45] V. Salas, E. Olı´as, A. Barrado, and A. La´zaro, “Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems,” Solar Energy Materials and Solar Cells, vol. 90, no. 11, pp. 1555-1578, 2006.
[46] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1292-1306, 2005.
[47] M. Calais, J. Myrzik, T. Spooner, and V. G. Agelidis, “Inverters for single-phase grid connected photovoltaic systems - an overview,” in Proc. IEEE PESC, 2002, pp. 1995-2000.
[48] J. M. A. Myrzik and M. Calais, “String and module integrated inverters for single-phase grid connected photovoltaic systems - a review,” in Proc. IEEE BPTC, 2000, pp. 1283-1288.
[49] T. Noguchi, S. Togashi, and R. Nakamoto, “Short-current pulse based adap¬tive maximum-power-point tracking for photovoltaic power generation system,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 217-223, 2002.
[50] S. Jiang, D. Cao, Y. Li, and F. Z. Peng, “Grid connected boost-half-bridge photovoltaic microinverter system using repetitive current control and maximum power point tracking” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4711-4721, 2012.
[51] H. Nagayoshi, K. Tokumisu, and T. Kajikawa, “Evaluation of multi MPPT thermoelectric generator system,” in Proc. ICT, 2007, pp. 318-321.
[52] H. Nagayoshi, T. Nakabayashi, H. Maiwa, and T. Kajikawa, “High efficiency maximum power point tracking power conditioner for TEG systems,” in Proc. IEEE ECT, 2008, pp. 231-233.
[53] M. G. Molina, L. E. Juanicó, G. F. Rinalde, E. Taglialavore, and S. Gortari, “Design of improved controller for thermoelectric generator used in distributed generation,” Int. J. Hydrogen Energy, vol. 35, no. 11, pp. 5968-5973, 2010.
[54] 曾百由,微處理器原理與應用-組合語言與PIC18微控制器,五南圖書出版股份有限公司,2009年。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw