進階搜尋


下載電子全文  
系統識別號 U0026-0908201216144400
論文名稱(中文) 非潤濕流體初始飽和度變化量對非飽和孔隙介質沉陷行為之研究
論文名稱(英文) A Numerical Study on the Influence of Initial Changes in Saturation of the Nonwetting Fluid on Consolidation of Unsaturated Porous Media
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系碩博士班
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 徐民哲
研究生(英文) Ming-Che Hsu
學號 n86991095
學位類別 碩士
語文別 中文
論文頁數 69頁
口試委員 口試委員-陳主惠
口試委員-李振誥
口試委員-陳金諾
口試委員-葉昭龍
指導教授-羅偉誠
中文關鍵字 非潤濕流體初始飽和度變化量  孔彈性理論  壓密  無因次孔隙壓力 
英文關鍵字 initial changes in saturation of the nonwetting fluid  poroelasticity theory  consolidation  dimensionless pore pressure 
學科別分類
中文摘要 本研究主要探討非潤濕流體初始飽和度變化量對非飽和孔隙介質沉陷行為之影響,其理論模式應用Lo et al. [2005]所提出之孔彈性理論方程式,並配合線性應力─應變關係式求得一維壓密沉陷解析解。假設非飽和土體於固定載重下,且表面及底層皆為透水層與大氣接觸,其孔隙間含有兩種不可混合、可壓縮並具有黏滯性之流體,兩種流體分別為空氣及水的情況下,探討非潤濕流體初始飽和度變化量於三種不同數值假設下對無因次孔隙壓力消散及土壤總沉陷量之影響,並針對四種不同數值假設的初始潤濕流體飽和度及十一種不同質地的土壤 [Rawls et al., 1992]進行模擬及比較。
非潤濕流體初始飽和度變化量愈大,其無因次孔隙壓力消散速度愈快,乃是因兩種孔隙流體之黏滯係數的差異以數量級(order)論之;且土壤總沉陷量也愈大。當初始潤濕流體飽和度愈小時,不同數值假設之非潤濕流體初始飽和度變化量對無因次孔隙壓力消散速度的影響愈顯著,仍是因兩種孔隙流體之黏滯係數的差異所致;且對土壤總沉陷量的影響也愈明顯。非潤濕流體初始飽和度變化量於不同數值假設下對無因次孔隙壓力消散速度的差異以坋質黏壤土、坋質黏土及黏土之影響較為顯著;而對土壤總沉陷量的差異以坋質黏土及黏土之影響較為明顯。
初始潤濕流體飽和度愈大,無因次孔隙壓力消散速度愈慢,土壤沉陷速度也愈慢,因此土壤總沉陷量趨於穩定之時間亦愈長,此亦肇因於兩種孔隙流體之黏滯係數的差異所致。
無因次孔隙壓力消散速度於壓力加載初期與土壤之滲透係數呈正相關,於壓力加載後期則必須同時考慮土壤之滲透係數與統體模數;而土壤總沉陷量則與土壤質地之統體模數呈負相關。
英文摘要 In the present study, a numerical study was performed to investigate the influence of initial changes in saturation of the nonwetting fluid on the consolidation behaviors of an elastic unsaturated porous medium. The analytical solution for a one-dimensional problem was derived based on the poroelasticity model of Lo et al. [2005] and the linear stress-strain relationship for a two-fluid system. The unsaturated porous skeleton examined here is assumed to have a free drainage surface on its top and base, and to be acted by constant external loadings, the interstices of which is permeated by two immiscible, viscous, compressible fluids, i.e. air and water. Eleven different soil textures, listed by Rawls et al. [1992], were selected for the determination of the dimensionless pore pressure and soil settlement with respect to the initial changes in saturation of the nonwetting fluid and initial saturation of the wetting fluid.
Our numerical results show that the dimensionless pore pressure dissipates faster as the initial changes in saturation of the nonwetting fluid is greater. The same trend is also observed for the soil settlement. The dissipation of the dimensionless pore pressure is more obvious (e.g. Silty clay loam, Silty clay, and Clay) as the initial saturation of the wetting fluid is smaller, in which soil settlement is also more significant (e.g. Silty clay, and Clay).
The dimensionless pore pressure dissipates slower as the initial saturation of the wetting fluid is greater, in which soil settlement also tends faster to achieve stable. The phenomenon is observed to be mainly dominated by the difference of viscosity coefficient of pore fluids.
It is also revealed that the dimensionless pore pressure dissipative rate is positively correlated with the permeability coefficient at the initial stage, and at the later stage it has to simultaneously consider the permeability coefficient and bulk modulus of solid matrix. Soil settlement is seen to be negatively correlated with the bulk modulus of solid matrix.
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VII
圖目錄 VIII
符號說明 IX

第一章 緒論 1
1-1 研究動機 1
1-2 研究目的及方法 2
1-3 文獻回顧 2
1-4 本文架構 6
第二章 理論模式 7
2-1 控制方程式 7
2-2 應力─應變關係式 8
2-3 初始條件 13
2-4 邊界條件 14
第三章 模擬計算 17
3-1 土壤分類 17
3-2 統體模數及剪力模數 (Bulk modulus and shear modulus) 18
3-3 滲透係數 (Permeability) 20
3-4 保水曲線 (Water retention curve) 20
3-5 水力傳導函數 (Hydraulic conductivity function) 22
3-6 模式相關參數 23
第四章 結果與討論 24
4-1 無因次孔隙壓力隨深度之變化 24
4-1-1 非潤濕流體初始飽和度變化量之比較 25
4-1-2 初始潤濕流體飽和度之比較 26
4-1-3 土壤質地之比較 27
4-2 總沉陷量隨時間之變化 28
4-2-1 非潤濕流體初始飽和度變化量之比較 28
4-2-2 初始潤濕流體飽和度之比較 29
4-2-3 土壤質地之比較 29
第五章 結論與建議 63
5-1 結論 63
5-2 建議 64
參考文獻 66
參考文獻 [1] 經濟部水利署,以農作調整觀點研析雲林高鐵沿線地層下陷防治策略,2008。
[2] 董佩榕,兩種非混合孔隙流體對非飽和孔隙介質沉陷之影響,國立成功大學水利及海洋工程研究所碩士論文,2007。
[3] 蔡宏洋,土壤性質對非飽和土體沉陷之影響研究,國立成功大學水利及海洋工程研究所碩士論文,2006。
[4] Albers, B., Linear Elastic Wave Propagation in Unsaturated Sands, Silts, Loams and Clays, Transport in Porous Media, vol. 86, no. 2, pp. 537-557, 2010.
[5] Bear, J., Dynamics of Fluids in Porous Media, Dover, Mineola, N. Y., 1988.
[6] Biot, M. A., General theory of three-dimensional consolidation, Journal of Applied Physics, vol. 12, no. 2, pp. 155-164, 1941.
[7] Biot, M. A., Theory of propagation of elastic waves in a fluid saturated porous solid, I. Low-frequency range, Journal of the Acoustical Society of America, vol. 28, no. 2, pp. 168-178, 1956a.
[8] Biot, M. A., Theory of propagation of elastic waves in a fluid saturated porous solid, II. Higher frequency range, Journal of the Acoustical Society of America, vol. 28, no. 2, pp. 179-191, 1956b.
[9] Biot, M. A., Mechanics of deformation and acoistic propagation in porous media, Journal of Applied Physics, vol. 33, no. 4, pp. 1482-1498, 1962.
[10] Bishop, A. W., The principle of effective stress, Teknik Ukeblad, vol. 39, pp. 859-863, 1959.
[11] Bishop, A. W., and G. E. Blight, Some aspects of effective stress in saturated and partly saturated soils, Geotechnique, vol. 13, no. 3, pp. 177-197, 1963.
[12] Brooks, R. H., and A. T. Corey, Hydraulic properties of porous media, Hydrology Papers, vol. 3, Civil Engineering Department, Colorado State University, Fort Collins, 1964.
[13] Corapcioglu, M. Y., and J. Bear, A mathematical model for regional land subsidence due to pumping 3. Integrated equations for a phreatic aquifer, Water Resources Research, vol. 19, no. 4, pp. 895-908, 1983.
[14] Das, B. M., Advanced Soil Mechanics, Taylor and Francis, Philadelphia, Pa, 1997.
[15] Fetter, C. W., Contaminant Hydrogeology, Prentice-Hall, Upper Saddle River, N. J., 1999.
[16] Fredlund, D. G., and N. R. Morgenstern, Constitutive relations for volume change in unsaturated soils, Canadian Geotechnical Journal, vol. 13, no. 3, pp. 261-276, 1976.
[17] Fredlund, D. G., and N. R. Morgenstern, Stress state variables for unsaturated soils, Journal of the Geotechnical Engineering Division, vol. 103, no. 5, pp. 447-466, 1977.
[18] Geraminegad, M., and S. K. Saxena, A coupled thermoelastic model for saturated-unsaturated porous media, Geotechnique, vol. 36, no. 4, pp. 539-550, 1986.
[19] Gibson, R. E., and M. J. L. Hussey, The theory of one-dimensional consolidation of saturated clays, Geotechnique, vol. 17, no. 3, pp. 261-273, 1967.
[20] Girsang, C. H., A numeical investigation of the seismic response of the aggregate pier foundation system, Master Thesis, Department of Civil Engineering, University of Virginia, Blacksburg, 2001.
[21] Gray, W. G., General conservation equations for multi-phase system: 4. Constitutive theory including phase change, Advances in Water Resources, vol. 6, pp. 130-140, 1983.
[22] Jennings, J. E. B., and J. B. Burland, Limitations to the use of effective stresses in partly saturated soils, Geotechnique, vol. 12, no. 2, pp. 125-144, 1962.
[23] Lewis, R. W., and B. A. Schrefler, The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, John Wiley, Hoboken, N. J., 1998.
[24] Lloret, A., and E. E. Alonso, Consolidation of unsaturated soils including swelling and collapse behaviour, Geotechnique, vol. 30, no. 4, 1980.
[25] Lo, W. C., G. Sposito, and E. Majer, Wave propagation through elastic porous media containing two immiscible fluids, Water Resources Research, vol. 41, no. 2, 2005.
[26] Lo, W. C., C. L. Yeh, and C. T. Tsai, Effect of soil texture on the propagation and attenuation of acoustic wave at unsaturated conditions, Journal of Hydrology, vol. 338, pp. 273-284, 2007.
[27] Middleton, G. V., and P. R. Wilcock, Mechanics in the earth and environmental sciences, Cambridge University Press, 1994.
[28] Mualem, Y., A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resources Research, vol. 12, no. 3, pp. 513-522, 1976.
[29] Rawls, W. J., L. R. Ahuja, and D. L. Brakensiek, Estimating soil hydraulic properties from soils data, Proceedings of Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, Riverside, CA, pp. 329-341, 1992.
[30] Safai, N. M., and G. F. Pinder, Vertical and horizontal land deformation due to fluid withdrawal, International Journal for Numerical and Analytical Method in Geomechanics, vol. 4, pp. 131-142, 1980.
[31] Terzaghi, K., Theoretical Soil Mechanics, John Wiley and Sons, N. Y., 1946.
[32] Tuncay, K., and M. Y. Corapcioglu, Consolidation of elastic porous media saturated by two immiscible fluids, Journal of Engineering Mechanics, vol. 122, no. 11, pp. 1077-1085, 1996.
[33] van Genuchten, M. T., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal, vol. 44, no. 5, pp. 892-898, 1980.
[34] Whitaker, S., The transport equations for multiphase system, Chem. Eng. Sci., vol. 28, no. 1, pp. 139-147, 1973.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-08-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw