進階搜尋


下載電子全文  
系統識別號 U0026-0908201116231100
論文名稱(中文) SUS 304不銹鋼銲接衰化區及雷射表面重熔技術研究
論文名稱(英文) The Study of Weld Decay Zone in SUS 304 Stainless Steel and Repairing Technique of Laser Surface Melting
校院名稱 成功大學
系所名稱(中) 機械工程學系專班
系所名稱(英) Department of Mechanical Engineering (on the job class)
學年度 99
學期 2
出版年 100
研究生(中文) 王昌隆
研究生(英文) Chang-Lung Wang
學號 n1795104
學位類別 碩士
語文別 中文
論文頁數 121頁
口試委員 指導教授-李驊登
口試委員-鄭勝隆
口試委員-蔡曜陽
中文關鍵字 沃斯田鐵型不銹鋼  銲接衰化  敏化  雷射表面重熔  沿晶腐蝕  拉伸試驗 
英文關鍵字 austenitic stainless steel  weld decay  sensitization  laser surface melting  intergranular corrosion  tensile test 
學科別分類
中文摘要 本研究探討SUS 304不銹鋼惰性氣體鎢極銲接(Inert Gas Tungsten Arc Welding, GTAW)敏化現象與熱場之關係,以及雷射表面重熔(Laser Surface Melting, LSM)對銲件衰化區(Weld Decay Zone, WDZ)修復效果。實驗首先透過微結構觀察和熱歷程分析,以確認WDZ位置與其熱場條件,接著以不同LSM參數對WDZ實施修補,比較各參數消除敏化效果及微結構變化,並透過拉伸測試探討LSM對於機械性質的影響。
實驗結果顯示SUS 304不銹鋼WDZ發生於距離銲道熔融線4.1mm~5.4mm處。根據熱歷程量測與統計得到SUS 304不銹鋼發生敏化溫度範圍為711℃~799℃,且當敏化溫度持溫時間為15.6sec ~19.1sec、冷卻速率為10.5℃/sec~14.6℃/sec時生成敏化現象。
由LSM實驗得知重熔區與熱影響區能有效提升SUS 304不銹鋼耐蝕能力,且當重熔區寬度與深度之比值(W/D)約為3~10時,LSM具有良好的操作性。LSM總保護範圍與能量密度成正比,熱影響區深度與寬度大小則須視LSM參數配合之情況決定。此外,拉伸測試結果指出,ER 308L銲道之柱狀枝晶強度較SUS 304不銹鋼為弱。以LSM修補衰化銲道對於ER 308L/SUS 304銲件之降伏強度及抗拉強度無明顯影響,而對於延伸率則有提升9% ~ 10%效果,此外由拉伸試驗之應力-應變圖得知LSM亦具有提升銲道韌性效果。
英文摘要 This study mainly aims at the relationship between GTAW weld decay zone (WDZ) and thermal-history of SUS 304 stainless steel as well as repairing effect of laser surface melting (LSM) to WDZ. The experiment first confirmed the position and thermal field condition of WDZ. Then, WDZ repair was implemented using LSM technique, compared de-sensitization effect and micro-structural variation, and studied impact to mechanical nature.
The results showed that WDZ of SUS 304 stainless steel has been detected at 4.1mm to 5.1mm apart from the weld fusion line. According to the analysis and statistics, the sensitization of SUS 304 stainless steel occurred at temperature ranges from 711 to 799℃, when sensitization temperature holding time of 15.6-19.1sec, with cooling rate of 10.5℃/sec~14.6℃/sec.
The LSM experiment indicated that re-melting zone and heat-affected zone (HAZ) can effectively enhance corrosion resistance of the sensitized SUS 304 stainless steel, and when width/depth ratio of re-melting zone was between 3 to 10 LSM can have good maneuverability. The protection range is in proportion to energy density. Size of depth and width of HAZ, however, depends on the match-up condition of LSM parameters. Besides, tensile strength of ER 308L weld deposit compared weakly with that of SUS 304 stainless steel. Repairing with LSM has no significant effect on tensile test for ER 308L/ SUS 304. Nevertheless, elongation was enhanced by 9% to 10%.
論文目次 中文摘要 III
英文摘要 IV
誌謝 V
表目錄 IX
圖目錄 X
第一章 前言 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究動機與目的 6
第二章 相關理論背景 11
2.1 銲接製程 11
2.1.1 惰性氣體鎢棒電弧銲接 11
2.1.2 GTAW優缺點 13
2.1.3 GTAW電流種類及影響 15
2.2 銲接凝固理論 18
2.2.1 組成過冷理論與凝固模式 18
2.2.2 枝晶的凝固成長過程 23
2.2.3 快速凝固對微觀偏析之影響 27
2.3 銲接材料性質 28
2.3.1 沃斯田鐵型不銹鋼 28
2.3.2 沃斯田鐵系不銹鋼的凝固過程 32
2.3.3 敏化現象與沿晶腐蝕 36
2.3.4 ASTM A262規範 39
2.4 雷射製程 42
2.4.1 Nd:YAG雷射製程 42
2.4.2 Keyhole mode & Conduction mode 42
2.4.3 雷射表面重熔 46
2.5 殘留應力 48
第三章 實驗方法與步驟 50
3.1 實驗規劃 50
3.2 實驗材料與製備 52
3.3 GTAW butt welding 55
3.4 抗敏化測試 57
3.5 抗IGC測試 58
3.6 LSM參數測試 59
3.7 金相微結構分析 61
3.8 拉伸試驗 62
3.8.1 製作拉伸試件 62
3.8.2 試件IGC處理 63
3.8.3 LSM修補 64
第四章 結果與討論 65
4.1 GTAW銲接 65
4.1.1 銲道金相組織 65
4.1.2 母材與銲接衰化區 69
4.1.3 熱循環歷程與溫度分佈 74
4.1.4 敏化溫度範圍 77
4.1.5 敏化冷卻速率範圍 79
4.1.6 敏化持溫時間範圍 81
4.1.7 敏化冷卻速率與敏化持溫時間之關係 83
4.2 LSM參數測試 85
4.3 拉伸試驗與斷口分析 96
4.3.1 未LSM試件拉伸試驗與斷口分析 96
4.3.2 實施LSM於WDZ拉伸試驗與斷口分析 99
4.3.3 實施LSM於銲道拉伸試驗與斷口分析 103
4.3.4 綜合討論 108
第五章 結論 112
第六章 未來研究方向 113
第七章 參考文獻 114
參考文獻 1. 財團法人國家政策研究基金會, “核能發電之必要性”(譯自The Need of Nuclear Power), 國政研究報告, 2000.
2. 葉宗洸, 余明昇, "國內外沸水式反應器壓力槽內部組件的劣化問題", 核研季刊, Vol.22, pp.49-69, 1997.
3. 梁仲賢, "壓水式核反應器材料的腐蝕與防治對策", 核研季刊, Vol.26, pp.8-12, 1999.
4. 賴文貴,“核電廠高溫水質環境的電化學意義”, 核研季刊, Vol.14, pp.32-40, 1995.
5. T. Ishihiara,"Corrosion Failure and Its Prevention in Light Water Reactor", Welding International, pp.209-216, 1989.
6. M.G. Fontana,“Corrosion Engineering”, 3rd ed., McGraw-Hill, New York, 1986.
7. G. Bao, S. Iguro, M. Inkyo, K. Shinozaki, Y. Mahara, and H. Watanabe, “Welding in the World”, Vol.49, pp.37-44, 2005.
8. J.H. Suh, J.K. Shin, S.J.L. Kang, Y.S. Lim, I.H. Kuk, and J.S. Kim, “Materials Science and Engineering”, Vol.254, pp.67-75, 1998.
9. 行政院原子能委員會, “龍門核能電廠初期安全分析報告書”, 審查結論報告,pp.4-13,1999
10. V. N. Shah, A. G. Ware, A. M. Porter, “Assessment of Pressurized Water Reactor Control Rod Drive Mechanism Nozzle Cracking”, UREG/ CR-6245, October, 1994
11. 游章雄,”核電廠管路系統之可靠度分析及預防維護策略研究”, 國立臺灣大學機械工程研究所博士論文, 2002
12. O. V. Akgun & O. T. Inal, “Desensitization of Sensitized 304 Stainless Steel by Laser Surface Melting”, Journal of Materials Science, Vol.27, pp.2147-2153, 1992.
13. Y. S. Lim, J. H. Suh, I. H. Kuk & J. S. Kim, "Microscopic Investigation of Sensitized Ni-Base Alloy 600 after Laser Surface Melting", Metallurgical and Materials Transactions A, Vol.28A, pp.1223-1231, 1997.
14. J. S. Kim, J. H. Suh, J. K. Shin, S. J. L. Kang, Y. S. Lim, and I.H. Kuk, "Investigation of IGSCC Behavior of Sensitized and Laser-Surface-Melted Alloy 600", Materials Science and Engineering A, Vol.254, pp. 67-75, 1998.
15. Y. S. Lim, H. P. Kim, J. H. Han, J. S. Kim, and H. S. Kwon, "Influence of Laser Surface Melting on the Susceptibility to Intergranular Corrosion of Sensitized Alloy 600", Corrosion Science, Vol. 43, pp. 1321-1335, 2001.
16. G. Bao, K. Shinozaki, M. Inkyo, T. Miyoshi, M. Yamamoto, Y. Mahara & H. Watanabe, “Modeling of Precipitation and Cr Depletion of Inconel 600 During Heat Treatments and LSM Procedure”, Journal of Alloy and Compounds, Vol.419, pp.118-125, 2006.
17. G. Bao, S. Iguro, M. Inkyo, K. Shinozaki, Y. Mahara & H. Watanabe, "Repair of Stress Corrosion Cracking in Overlaying of Inconel 182 by Laser Surface Melting", Welding in the World, Vol.49, pp.37-44, 2005.
18. G. Bao, K. Shinozaki, S. Iguro, M. Inkyo, M. Yamamoto, Y. Mahara & H. Watanabe, "Stress Corrosion Cracking Sealing in Overlaying of Inconel 182 by Laser Surface Melting”, Journal of Materials Processing Technology, Vol.173, pp.330-336, 2006.
19. J. D. Kim, C. J. Kim, C. M. Chung, "Repair welding of etched tubular component of nuclear power plant by Nd:YAG laser", Journal of Materials Processing Technology, Vol. 114, pp. 51-56, 2001.
20. 曾秉鈞,“雷射表面重熔參數對SUS 304敏化不銹鋼去敏化之影響”,國立成功大學機械工程研究所碩士論文, 2009
21. 王憲明,“敏化處理對304型不銹鋼機械性質影響”,義守大學材料科學與工程學系碩士班, 2003
22. William F. Smith, “Foundations of Materials Science and Engineering, 2/E, McGraw-Hill, Inc., 1994.
23. John C. Lippold, Damian J. Kotecki, “Welding Metallurgy and Weldability of Stainless Steels”, John Wiley & Sons, Inc., 2005
24. 洪聖凱,“不銹鋼銲件沿晶應力腐蝕劣化之雷射表面重熔修補技術研究”, 國立成功大學機械工程研究所碩士論文,2010
25. 范文傑, “Nd-YAG雷射銲接製程參數對鎳基690與304L不銹鋼異種銲接之影響”, 國立成功大學機械工程研究所碩士論文, 2005
26. 李孟軒, “GTAW 與LBW製程對鎳基690合金對接銲之殘留應力研究”, 國立成功大學機械工程研究所碩士論文, 2007
27. 賴振慶, “ASTM A533 與 A572異種母材銲接之銲接性質研究”, 國立成功大學機械工程研究所碩士論文, 2006
28. Robert, E. Reed-Hill, and Reza Abbaschian, Physical Metallurgy Principle, Vol.3, Internation Thomson Publishing, 1992
29. Sindo Kuo, “Welding Metallurgy”, Wiley, New York, pp.179-187, 1987
30. W. Kurz and D. J. Fisher, “Fundamentals of Solidification”, Trans. Tech.Publications Ltd., pp.7-139, 1984
31. W. F. Savage, “Weld Metal Solidification mechanics”, Welding Journal, Vol.35, No.4, pp.175-180, 1956
32. J. R. Crum, K. A. Hech, and T. M. Angeliu, “Effect of Different Thermal Treatments on the Corrosion Resistant of Alloy 690 Tubing”, 1990
33. H. Q. Hu, “Fundamentals of Metallic Solidification”, China Machine Press, Beijing, 2000
34. 張文鋮, 張炳范, 杜則裕, 張志明, “銲接冶金學”, 機械工業出版社, 2001
35. R. A. Lula, “Stainless Steel”, Metals Park, American Society for Metals, 1986
36. “鋼鐵材料設計與應用”, 中國礦冶工程協學, 2007
37. ASM, “Metals Handbook”, 10th Edition, Vol.2, International, 1990
38. 王繼敏, “不銹鋼與金屬腐蝕”, 科技圖書股份有限公司, 1990
39. John C. Lippold, Damian J. Kotecki, “Welding Metallurgy and Weldability of Stainless Steels”, John Wiley & Sons, Inc., pp.19-22, pp.141-152, pp.200, 2005
40. K. Matsubuchi, “Analysis of Welded Structures” Pergamon Press, Oxford, 1980
41. 蔡耀隆, “銲道溫度與應力分析實驗”, 國立交通大學機械工程研究所碩士論文, 2001
42. 李驊登, “鋼鐵材料學”, 國立成功大學機械系課程講義, 2007
43. 中鼎公司管線部材料組, “不銹鋼材料選用準則”, pp.4-21, 2008
44. Erich Folkhard, “Welding Metallurgy of Stainless Steels”, pp.15-53, pp.196, 1987
45. ASTM A240, “Standard Specification for Heat-Resisting Chromium and Chromium – Nickel Stainless Steel Plate, Sheet and Strip for Pressure Vessel”, 2000
46. G. K. Allan, “Solidification of Austenitic Stainless Steels”, Ironmaking and Steelmaking, Vol. 22, No.6, pp.465-477, 1995.
47. N. Sutala, T. Takalo and T.Moisio, “Ferritic-Austenitic Solidification Mode in Austenitic Stainless Steel Welds, “Metallurgical Transactions A, Vol. 11A, No.5, pp.717-725, 1980.
48. S. Liu & J. E. Indacochea, “Metal Handbook”, Vol.1, Property and Selection : Irons, Steels and High-Performance Alloy, pp.603-613, 1989.
49. J. S. Armijo, “Intergranular Corrosion of Nonsensitized Austenitic Stainless Steels”, Corrosion Science., Vol.24, pp.24-30, 1984.
50. V. Kain, K. Chandra, K. N. Adhe & P. K. De, “Effect of cold work on low-temperature sensitization behaviour of austenitic stainless steels”, Journal of Nuclear Materials, Vol.334, pp.115-132, 2004.
51. ASTM A262-02a, “Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels”, 2002.
52. R. C. P. Wong, A. P. Hoult, J. K. Kim and T.X. Yu, “Improvement of adhesive bonding in aluminum alloys using a laser surface texturing process”, Journal of Material Processing Technology, pp.579-584, 1997
53. W. M. Steen, “Laser Material Processing”, Springer-Verlag, London, 1991.
54. J. C. Ion, “Laser Processing of Engineering Materials”, Elsevier, Amsterdam, 2004.
55. S. Yang, Z. J. Wang, H. Kokawa & Y. S. Sato, “Reassessment of the effects of laser surface melting on IGC of SUS 304”, Materials Science and Engineering, Vol.474, pp.112-119, 2008.
56. S. Yang, Z. J. Wang & H. Kokawa, “Grain boundary engineering of 304 austenitic stainless steel by laser surface melting amd annealing”, Journal of Materials Science, Vol.42, pp.847-853, 2007.
57. K. Matsubuchi, “Analysis of Welded Structures”, Pergamon Press, Oxford, 1980.
58. 蔡曜隆, “銲道溫度與應力分析實驗”, 國立交通大學機械工程研究所碩士論文, 2001.
59. T. L. Teng, P. H. Chang & W. C. Tseng, “Effect of welding sequences on residual stresses”, Computers & Structures, Vol.81, pp.273-286, 2003.
60. Material and Process Requirements for ASME Sec. III, Class 1, 2, 3, Piping Standard Equipment Requirements, “Welding of Austenitic Stainless Steel”, 2000
61. C.P. Chou, P. S. Wu, “Studies of Characteristics of Austenitic Stainless Steel weld Metal Heat Affected Zone”, Chinese Journal of Materials science, Vol.1, 18A, No.2, pp.47-59, 1986
62. C. Weisman, “Welding Handbook”, 7th ed., Vol. 1, American Welding Society, 1976
63. D. Radaj, “Heat Effect of Welding”, Springer-Verlag, 1992
64. H. T. Lee, J. L. Wu, T. Y. Kuo, R. C. Kuo, J. Y. Huang & S. L. Jeng , “The Influence of Thermal Cycles in the Heat Affected Zone Sensitization of Alloy 690”, Asian-Pacific Corrosion Forum – Corrosion in Nuclear Systems 2009, Tokyo, 2009.
65. H. T. Lee & J. L. Wu, Correlation between corrosion resistance properties and thermal cycles experienced by gas tungsten arc welding and laser beam welding Alloy 690 butt weldments”, Corrosion Science, Vol.51, pp.733–743, 2009.
66. H. T. Lee & J. L. Wu, “The effects of peak temperature and cooling rate on the susceptibility to intergranular corrosion of alloy 690 by laser beam and gas tungsten arc welding”, Corrosion Science, Vol.51, pp.439–445, 2009.
67. ASME Boiler & Pressure Vessel Code Section IX, “Welding and Brazing Qualification”, pp.80 & pp.152, 2007
68. 蔡顯榮, “雷射銲接參數對鐵錳鋁合金銲道氣孔之影響”, 國科會成果報告, 1993
69. 林永定, “鎳基690合金與SUS304L不銹鋼異種金屬電子束銲接特性與微結構研究”, 國立成功大學機械工程研究所博士論文, 2007
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-08-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw