進階搜尋


下載電子全文  
系統識別號 U0026-0908201111381500
論文名稱(中文) 冷原子中量子干涉機制之四波混合
論文名稱(英文) Four-wave mixing using quantum interference in cold atoms
校院名稱 成功大學
系所名稱(中) 物理學系碩博士班
系所名稱(英) Department of Physics
學年度 99
學期 2
出版年 100
研究生(中文) 陳衍均
研究生(英文) Yen-Chun Chen
學號 l26994065
學位類別 碩士
語文別 中文
論文頁數 56頁
口試委員 指導教授-陳泳帆
口試委員-陳應誠
口試委員-周忠憲
中文關鍵字 電磁波引發透明  四波混頻  交錯相位調變 
英文關鍵字 Electromagnetically induced transparency  Four-wave mixing  Cross-phase modulation 
學科別分類
中文摘要 本論文研究基於電磁波引發透明之低光強脈衝型式的四波混合(或稱四波混頻)系統。在冷銣原子介質的四能階系統中,我們已觀察到最大有41% 的四波混頻轉換效率。另外,我們首先提出並實現一應用雙電磁波引發透明機制的全光學交錯相位調變系統,其可在數顆光子的能量下操控光脈衝相位。實驗上,我們已觀察到僅以約有一打光子能量的訊號脈衝,即可操控相同能量的探測脈衝有0.8π 的相位偏移。
英文摘要 We report on an experimental demonstration of low-light-level four-wave mixing using electromagnetically induced transparency (EIT) in the pulsed regine. A conversion efficiency of 41% was observed in a four-level system of cold 87Rb atoms. In addition, we demonstrated a noval cross-phase modulation with double EIT scheme at few-photon levels. A phase shift of 0.8π of a probe pulse induced by a signal pulse with an energy on the order of a dozen photons was observed.
論文目次 摘要 i
Abstract ii
致謝 iii
第一章緒論 1
1.1 簡介 1
1.2 量子干涉機制 2
1.3 四波混頻系統 3
1.4 克爾效應之交錯相位調變機制 4
1.5 實驗動機 5
第二章冷原子系統 6
2.1 磁光陷阱 6
2.2 暗區自發力光陷阱 11
第三章基本理論 13
3.1 電磁波引發透明現象 13
3.2 慢光與光儲存 17
3.3 慢光四波混頻 20
3.4 慢光四波混頻機制之交錯相位調變 22
第四章實驗架設 25
4.1 雷射系統 25
4.2 時序控制 29
4.3 量測系統 30
第五章實驗結果與討論 33
5.1 慢光四波混頻 33
5.2 慢光四波混頻之光儲存 38
5.3 慢光四波混頻形式之交錯相位調變 40
第六章結論與展望 44
參考文獻 46
附錄A 光路相對相位穩定 50
附錄B 聚焦光束腰寬量測 53
參考文獻 [1] Lo, H.-Y., Su, P.-C. & Chen, Y.-F. Low-light-level cross-phase modulation by quantum interference. Phys. Rev. A 81, 053829 (2010).
[2] Foletti, S., Bluhm, H., Mahalu, D., Umansky, V. & Yacoby, A. Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization. Nature Phys. 5, 903 (2009).
[3] Clark, S. G. & Parkins, A. S. Entanglement and entropy engineering of atomic two-qubit states. Phys. Rev. Lett. 90, 047905 (2003).
[4] Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995).
[5] Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998).
[6] Nielsen, M. & Chuang, I. Quantum Computation and Quantum Information (Cambridge University Press, 2002).
[7] Lo, H.-Y. et al. Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels. Phys. Rev. A 83, 041804 (2011).
[8] Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres
per second in an ultracold atomic gas. Nature (London) 397, 594 (1999).
[9] Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094 (2000).
[10] Braje, D. A., Bali´c, V., Goda, S., Yin, G. Y. & Harris, S. E. Frequency maxing using electromagnetically induced transparency in cold atom. Phys. Rev. Lett. 93, 183601 (2004).
[11] Lo, H.-Y., Su, P.-C., Cheng, Y.-W., Wu, P.-I. & Chen, Y.-F. Femtowatt-light-level phase measurement of slow light pulses via beat-note interferometer. Opt. Express 18, 19498
(2010).
[12] Maker, P. D. & Terhune, R. W. Study of optical effects due to an induced polarization third order in the electric field strength. Phys. Rev. 137, A801 (1965).
[13] Lubkin, G. B. Nobel physics prize to bloembergen, schawlow and siegbahn. Phys. Today 34, 17 (1981).
[14] Slusher, R. E., Hollberg, L. W., Yurke, B., Mertz, J. C. & Valley, J. F. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409 (1985).
[15] Kang, H., Hernandez, G. & Zhu, Y. Resonant four-wave mixing with slow light. Phys. Rev. A 70, 601804 (2004).
[16] Wineland, D. J., Bollinger, J. J., Itano, W. M. & Heinzen, D. J. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67 (1994).
[17] Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693 (1981).
[18] Bouwmeester, D., Ekert, A. K. & Zeilinger, A. The Physics of quantum information (Springer, 2000).
[19] Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge University Press, 2006).
[20] Zhang, J., Hernandez, G. & Zhu, Y. All-optical switching at ultralow light levels. Opt. Lett. 32, 1317 (2007).
[21] Korsunsky, E. A., Leinfellner, N., Huss, A., Baluschev, S. &Windholz, L. Phase-dependent electromagnetically induced transparency. Phys. Rev. A 59, 2302 (1999).
[22] Chen, H. C. Theoretical study of nonliner optics by quantum interference. Master’s thesis, NCKU (2011).
[23] Chu, S., Hollberg, Bjorkholm, J. E. & Ashkin, A. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett. 55, 48 (1985).
[24] Cohen-Tannoudji, C. N. Manipulating atoms with photons. Rev. Mod. Phys. 70, 707 (1998).
[25] Cheng, Y.-W. Setup and optimization of rubidium magneto-optical trap. Master’s thesis, NCKU (2009).
[26] Chu, S., Bjorkholm, J. E., Ashkin, A. & Cable, A. Experimental observation of optically trapped atoms. Phys. Rev. Lett. 57, 314 (1986).
[27] Su, P. C. Atomic Raman memory for generation of correlated photon pairs. Master’s thesis, NCKU (2010).
[28] Ketterle, W., Davis, K. B., Joffe, M. A., Martin, A. & Pritchard, D. E. High densities of cold atoms in a dark spontaneous-force optical trap. Phys. Rev. Lett. 70, 2253 (1993).
[29] Boller, K. J., Imamoˇglu, A. & Harris, S. E. Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593 (1991).
[30] Fleischhauer, M., Imamoˇglu, A. & J. P, M. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).
[31] Briegel, H.-J., D¨ur, W., Cirac, J. I. & Zoller, P. Quantum repeater: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998).
[32] Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413 (2001).
[33] Harris, S. E. & Hau, L. V. Nonlinear optics at low light levels. Phys. Rev. Lett. 82, 4611 (1999).
[34] Payne, M. G. & Deng, L. Consequence of induced transparency in a double- scheme: Destructive interference in four-wave mixing. Phys. Rev. A 65, 063806 (2002).
[35] Deng, L. & Payne, M. G. Achieving induced transparency with one- and three-photon destructive interference in a two-mode, three-level, double- system. Phys. Rev. A 71, 011803 (2005).
[36] Payne, M. G. & Deng, L. Quantum entanglement od fock states with perfectly efficient ultraslow single-probe photon four-wave mixing. Phys. Rev. Lett. 91, 123602 (2003).
[37] Chen, H.-C., Chen, Y.-C., Lo, J.-X. C. H.-Y. & Chen, Y.-F. Low-light-level four-wave mixing by quantum interference. in preparation (2011).
[38] Chen, Y.-C., Chen, H.-C., Lo, H.-Y., Chen, J.-X. & Chen, Y.-F. Few-photon-level cross-phase modulation using double electromagnetically induced transparency. in preparation (2011).
[39] Yan, H. et al. Generation of narrow-band hyperentangled nondegenerate pairsed photons. Phys. Rev. Lett. 106, 033601 (2011).
[40] Chen, J.-X. Generation of polarization-entangled photons using four-wave mixing in cold atoms. Master’s thesis, NCKU (2011).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-08-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw