進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0907202015041500
論文名稱(中文) 污水污泥與香菇包的共氣化分析
論文名稱(英文) Co-gasification of Sewage Sludge and Shiitake
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 林聖彬
研究生(英文) Sheng-Pin Lin
學號 N16074289
學位類別 碩士
語文別 英文
論文頁數 89頁
口試委員 指導教授-林大惠
口試委員-陳冠邦
口試委員-伍芳嫺
口試委員-侯順雄
中文關鍵字 污泥  香菇包  共氣化  熱重分析  傅立葉轉換紅外線光譜法 
英文關鍵字 Sewage sludge  Shiitake  Co-gasification  Thermogravimetric analysis  Fourier transform infrared spectroscopy  Aspen plus 
學科別分類
中文摘要 共氣化技術是一種可以製造出有價值合成氣的一種相對傳統掩埋更清潔的一種污泥解決方案。在本研究當中透過使用熱重分析(TGA)結合傅立葉轉換紅外線光譜法分析了污水污泥、香菇包及其混合物的熱解特性。在純氮環境下,混合污泥與香菇包可以促進焦炭的分解但會抑制無機物的分解。並且烷烴等高分子碳氫化合物的排放是被抑制的。然而,在混摻比(BR)是75%時,C-O鍵與C-H鍵的排放是上升的,因此推測混合污泥與香菇包可以促進分解大分子碳氫化合物成小分子物質。本研究也利用實驗室等級流體化床氣化爐系統探討不同條件下之氣化性能,包括空氣當量比(ER)與溫度對污泥、香菇包與其混合物氣化結果的影響。從實驗結果中可知,操作溫度的升高會促進氣化過程中的氣體熱值、冷氣效率(cold gas efficiency)和碳轉化效率的上升。但是,不同的燃料會有個別的最佳空氣當量比;對於純污泥氣化來說最佳空氣當量比為0.25,然而純香菇包之最佳空氣當量比為0.1。而在共氣化之實驗中,隨著汙泥混摻比的降低,產氣的氣體熱值、冷氣效率和碳轉化效率均升高。當燃空比為0.25時,在混合物中添加25%或75%的污泥的共氣化提高了碳轉化效率。因此可得知污泥與香菇共氣化對改善碳轉化效率有積極作用,並可能有助於促進污泥作為氣化輔助資源的應用,最後,本研究使用Aspen plus軟體以吉布斯平衡模型與動力學模型進行模擬並預測氣化結果,從比較結果中可知動力學模型比吉布斯平衡模型更精確地預測實驗結果,而並且隨著空氣當量比的變化,動力學模型較能預測出與實驗相同的趨勢。
英文摘要 The co-gasification process may be a cleaner alternative solution to sewage sludge valorization and the production of valuable synthetic gases. In this study, the pyrolysis characteristics of sewage sludge, shiitake substrate, and their blends were analyzed via a thermogravimetric analysis (TGA) combined with Fourier transform infrared spectroscopy. From TGA, the addition of the sludge in the shiitake might improve the decomposition of char and inhibit the decomposition of inorganic materials in the pyrolysis. The addition of sludge to the blends decreased the alkanes, aliphatic aldehyde C=O groups, and C=C in aromatic compound emissions. An increase in the emitted C-O and C-H was found for blending ratio (BR) = 75%. This study presents the gasification performance results based on different scenarios. These scenarios included co-gasification of sewage sludge and shiitake and variations in the air supply and operating temperature. Increases in the operating temperature led to increases in Lower heating value (LHV), Cold gas efficiency (CGE), and Caron conversion efficiency (CCE) in the gasification process. Also, the optimal equivalence ratio (ER) was found to depend on the fuel species. The LHV and CGE of the product gas increased with decreases in BR. The addition of 25% and 75% sewage sludge in the blend had a positive effect in terms of improving the CCE when the ER was 0.25. Therefore, sludge co-gasification with shiitake improves the CCE and may help promote the use of sludge as a gasification assistance resource. The kinetic model was found to be more reliable for simulating the gasification process as compared with the Gibbs equilibrium model. Compared with Gibbs equilibrium model, the trend of the kinetic model result is coinciding with experimental data in this study.
論文目次 摘要 I
Abstract II
Acknowledgements III
Table of Contents IV
List of Tables VI
List of Figures VI
Nomenclature IX
1. Introduction 1
1.1 Thermochemical Conversion of Biomass 1
1.2 Biomass Gasification 2
1.2.1 Gasification Reactions 3
1.2.2 Gasification Reactors 4
1.2.3 Gasification Agent 5
1.2.4 Co-gasification of Biomass 6
1.3 Process Simulation of Biomass Gasification 7
1.4 Objective of the study 10
2. Materials and Methodology 12
2.1 Sample Pretreatment 12
2.2 Sample Analysis 13
2.2.1 Proximate Analysis 14
2.2.2 Ultimate Analysis 15
2.3 Thermogravimetric Combine Infrared Spectroscopy analysis 15
2.4 Lab-scale Gasification System 16
2.5 Aspen Plus Simulation Methodology 20
2.5.1 Gibbs Equilibrium Model 20
2.5.2 Kinetic Model 22
3. Results and Discussion 24
3.1 Fuel Properties 24
3.2 Thermogravimetric Analysis 25
3.3 Infrared Spectroscopy Analysis 28
3.4 Gasification Characteristics 32
3.4.1 Gasification of Sewage Sludge 32
3.4.2 Gasification of Shiitake 33
3.4.3 Gasification of Sewage Sludge and Shiitake Blends 35
3.5 Aspen Plus of Gasification 38
3.5.1 Gibbs Equilibrium Model Results 38
3.5.2 Kinetic Model Results 40
4. Conclusion 43
5. References 46
6. Tables and Figures 52
6.1 Tables 52
6.2 Figures 56
Appendix 84

參考文獻 [1] A. Kelessidis and A. S. Stasinakis, "Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries," Waste management, vol. 32, no. 6, pp. 1186-1195, 2012.
[2] J. Peccia and P. Westerhoff, "We should expect more out of our sewage sludge," ed: ACS Publications, 2015.
[3] G. Yang, G. Zhang, and H. Wang, "Current state of sludge production, management, treatment and disposal in China," Water Res., vol. 78, pp. 60-73, 2015.
[4] S. Dumontet, A. Scopa, S. Kerje, and K. Krovacek, "The importance of pathogenic organisms in sewage and sewage sludge," J. Air Waste Manage. Assoc., vol. 51, no. 6, pp. 848-860, 2001.
[5] A. Kumar, D. D. Jones, and M. A. Hanna, "Thermochemical biomass gasification: a review of the current status of the technology," Energies, vol. 2, no. 3, pp. 556-581, 2009.
[6] K.-M. Lu, W.-J. Lee, W.-H. Chen, and T.-C. Lin, "Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends," Applied Energy, vol. 105, pp. 57-65, 2013/05/01/ 2013, doi: https://doi.org/10.1016/j.apenergy.2012.12.050.
[7] Y. Lin et al., "Co-pyrolysis kinetics of sewage sludge and oil shale thermal decomposition using TGA–FTIR analysis," Energy Convers. Manage., vol. 118, pp. 345-352, 2016.
[8] S. S. A. Syed-Hassan, Y. Wang, S. Hu, S. Su, and J. Xiang, "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, vol. 80, pp. 888-913, 2017, doi: 10.1016/j.rser.2017.05.262.
[9] P. Basu, "Biomass Gasification, Pyrolysis and Torrefaction," in Biomass Gasification, Pyrolysis and Torrefaction, 2013, pp. i-iii.
[10] A. Domínguez, J. A. Menéndez, and J. J. Pis, "Hydrogen rich fuel gas production from the pyrolysis of wet sewage sludge at high temperature," J. Anal. Appl. Pyrolysis, vol. 77, no. 2, pp. 127-132, 2006/10/01/ 2006, doi: https://doi.org/10.1016/j.jaap.2006.02.003.
[11] J. M. de Andrés, A. Narros, and M. E. Rodríguez, "Air-steam gasification of sewage sludge in a bubbling bed reactor: Effect of alumina as a primary catalyst," Fuel Process. Technol., vol. 92, no. 3, pp. 433-440, 2011/03/01/ 2011, doi: https://doi.org/10.1016/j.fuproc.2010.10.006.
[12] P. McKendry, "Energy production from biomass (part 1): overview of biomass," Bioresour. Technol., vol. 83, no. 1, pp. 37-46, 2002/05/01/ 2002, doi: https://doi.org/10.1016/S0960-8524(01)00118-3.
[13] P. McKendry, "Energy production from biomass (part 3): gasification technologies," Bioresour. Technol., vol. 83, no. 1, pp. 55-63, 2002/05/01/ 2002, doi: https://doi.org/10.1016/S0960-8524(01)00120-1.
[14] X. T. Li, J. R. Grace, C. J. Lim, A. P. Watkinson, H. P. Chen, and J. R. Kim, "Biomass gasification in a circulating fluidized bed," Biomass Bioenergy, vol. 26, no. 2, pp. 171-193, 2004/02/01/ 2004, doi: https://doi.org/10.1016/S0961-9534(03)00084-9.
[15] V. Kishore, Renewable energy engineering and technology: a knowledge compendium. Energy and Resources Institute, 2008.
[16] N. Couto, A. Rouboa, V. Silva, E. Monteiro, and K. Bouziane, "Influence of the biomass gasification processes on the final composition of syngas," Energy Procedia, vol. 36, pp. 596-606, 2013.
[17] A. Anukam, S. Mamphweli, P. Reddy, E. Meyer, and O. Okoh, "Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: A comprehensive review," Renewable and Sustainable Energy Reviews, vol. 66, pp. 775-801, 2016.
[18] R. C. Brown, Thermochemical processing of biomass: conversion into fuels, chemicals and power. John Wiley & Sons, 2019.
[19] A. Molino, S. Chianese, and D. Musmarra, "Biomass gasification technology: The state of the art overview," Journal of Energy Chemistry, vol. 25, no. 1, pp. 10-25, 2016.
[20] Y.-K. Choi, T.-Y. Mun, M.-H. Cho, and J.-S. Kim, "Gasification of dried sewage sludge in a newly developed three-stage gasifier: Effect of each reactor temperature on the producer gas composition and impurity removal," Energy, vol. 114, pp. 121-128, 2016/11/01/ 2016, doi: https://doi.org/10.1016/j.energy.2016.07.166.
[21] P. Lahijani and Z. A. Zainal, "Gasification of palm empty fruit bunch in a bubbling fluidized bed: A performance and agglomeration study," Bioresour. Technol., vol. 102, no. 2, pp. 2068-2076, 2011/01/01/ 2011, doi: https://doi.org/10.1016/j.biortech.2010.09.101.
[22] Y. Niu, F. Han, Y. Chen, Y. Lyu, and L. Wang, "Experimental study on steam gasification of pine particles for hydrogen-rich gas," Journal of the Energy Institute, vol. 90, no. 5, pp. 715-724, 2017/10/01/ 2017, doi: https://doi.org/10.1016/j.joei.2016.07.006.
[23] R. N. André et al., "Fluidised bed co-gasification of coal and olive oil industry wastes," Fuel, vol. 84, no. 12-13, pp. 1635-1644, 2005.
[24] F. Pinto, C. Franco, R. André, M. Miranda, I. Gulyurtlu, and I. Cabrita, "Co-gasification study of biomass mixed with plastic wastes," Fuel, vol. 81, no. 3, pp. 291-297, 2002.
[25] F. Pinto et al., "Gasification improvement of a poor quality solid recovered fuel (SRF). Effect of using natural minerals and biomass wastes blends," Fuel, vol. 117, pp. 1034-1044, 2014.
[26] M. L. Mastellone, L. Zaccariello, and U. Arena, "Co-gasification of coal, plastic waste and wood in a bubbling fluidized bed reactor," Fuel, vol. 89, no. 10, pp. 2991-3000, 2010.
[27] I. Ahmed, N. Nipattummakul, and A. Gupta, "Characteristics of syngas from co-gasification of polyethylene and woodchips," Applied energy, vol. 88, no. 1, pp. 165-174, 2011.
[28] M. Seggiani, M. Puccini, G. Raggio, and S. Vitolo, "Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier," Waste management, vol. 32, no. 10, pp. 1826-1834, 2012.
[29] M. Hu et al., "Syngas production by catalytic in-situ steam co-gasification of wet sewage sludge and pine sawdust," Energy Convers. Manage., vol. 111, pp. 409-416, 2016/03/01/ 2016, doi: https://doi.org/10.1016/j.enconman.2015.12.064.
[30] X. Ma, X. Zhao, J. Gu, and J. Shi, "Co-gasification of coal and biomass blends using dolomite and olivine as catalysts," Renewable Energy, vol. 132, pp. 509-514, 2019.
[31] F. Pinto, H. Lopes, R. N. André, I. Gulyurtlu, and I. Cabrita, "Effect of catalysts in the quality of syngas and by-products obtained by co-gasification of coal and wastes. 1. Tars and nitrogen compounds abatement," Fuel, vol. 86, no. 14, pp. 2052-2063, 2007/09/01/ 2007, doi: https://doi.org/10.1016/j.fuel.2007.01.019.
[32] A. Gómez-Barea and B. Leckner, "Modeling of biomass gasification in fluidized bed," Prog. Energy Combust. Sci., vol. 36, no. 4, pp. 444-509, 2010/08/01/ 2010, doi: https://doi.org/10.1016/j.pecs.2009.12.002.
[33] K. I. Al-Malah, Aspen plus. Wiley Online Library, 2016.
[34] P.-C. Kuo and W. Wu, "Design, optimization and energetic efficiency of producing hydrogen-rich gas from biomass steam gasification," Energies, vol. 8, no. 1, pp. 94-110, 2015.
[35] L. P. R. Pala, Q. Wang, G. Kolb, and V. Hessel, "Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: An Aspen Plus model," Renewable Energy, vol. 101, pp. 484-492, 2017.
[36] S. Safarian, R. Unnþórsson, and C. Richter, "A review of biomass gasification modelling," Renewable and Sustainable Energy Reviews, vol. 110, pp. 378-391, 2019/08/01/ 2019, doi: https://doi.org/10.1016/j.rser.2019.05.003.
[37] A. Gómez-Barea, H. Thunman, B. Leckner, M. Campoy, and P. Ollero, "Prediction of gas composition in biomass gasifiers," in Second International Congress of Energy and Environment Engineering and Management, Badajoz, Spain, June, 2007, pp. 6-8.
[38] M. B. Nikoo and N. Mahinpey, "Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS," Biomass Bioenergy, vol. 32, no. 12, pp. 1245-1254, 2008.
[39] T. Damartzis, S. Michailos, and A. Zabaniotou, "Energetic assessment of a combined heat and power integrated biomass gasification–internal combustion engine system by using Aspen Plus®," Fuel Process. Technol., vol. 95, pp. 37-44, 2012/03/01/ 2012, doi: https://doi.org/10.1016/j.fuproc.2011.11.010.
[40] S. Begum, M. G. Rasul, D. Akbar, and D. Cork, "An experimental and numerical investigation of fluidized bed gasification of solid waste," Energies, vol. 7, no. 1, pp. 43-61, 2014.
[41] 行政院環境保護署. 重點事業廢棄物-一般污泥之處理方式 [Online] Available: https://data.epa.gov.tw/dataset/wr_p_182/resource/192b7582-7fa7-4858-8c3f-c7e00319145e
[42] J.-x. Cheng, "下水污泥再利用方案探討," National Central University, 2015.
[43] 行政院農業委員會. "太空包栽培後介質再利用." https://theme.coa.gov.tw/storyboard.php?type=b&web=C&id=420 (accessed.
[44] S. Kern, C. Pfeifer, and H. Hofbauer, "Co-gasification of wood and lignite in a dual fluidized bed gasifier," Energy Fuels, vol. 27, no. 2, pp. 919-931, 2013.
[45] C. o. A. Taiwan Agricultural Research Institute. "Alternative substrates for growing mushrooms." https://www.tari.gov.tw/english/form/index-1.asp?Parser=20,15,926,81,,,3007 (accessed.
[46] B. Cassel, K. Menard, C. Shelton, and C. Earnest, "Proximate analysis of coal and coke using the STA 8000 Simultaneous Thermal Analyzer," PerkinElmer Application Note, 2012.
[47] I. Narvaez, A. Orio, M. P. Aznar, and J. Corella, "Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of the produced raw gas," Ind. Eng. Chem. Res., vol. 35, no. 7, pp. 2110-2120, 1996.
[48] R. W. Miller, "Flow measurement engineering handbook," 1983.
[49] A. A. Ahmad, N. A. Zawawi, F. H. Kasim, A. Inayat, and A. Khasri, "Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation," Renewable and Sustainable Energy Reviews, vol. 53, pp. 1333-1347, 2016.
[50] S. Sansaniwal, K. Pal, M. Rosen, and S. Tyagi, "Recent advances in the development of biomass gasification technology: A comprehensive review," Renewable and Sustainable Energy Reviews, vol. 72, pp. 363-384, 2017.
[51] P. Lv, Z. Xiong, J. Chang, C. Wu, Y. Chen, and J. Zhu, "An experimental study on biomass air–steam gasification in a fluidized bed," Bioresour. Technol., vol. 95, no. 1, pp. 95-101, 2004.
[52] Y.-K. Choi, J.-H. Ko, and J.-S. Kim, "Gasification of dried sewage sludge using an innovative three-stage gasifier: Clean and H2-rich gas production using condensers as the only secondary tar removal apparatus," Fuel, vol. 216, pp. 810-817, 2018/03/15/ 2018, doi: https://doi.org/10.1016/j.fuel.2017.12.068.
[53] K. J. Timmer, "Carbon conversion during bubbling fluidized bed gasification of biomass," 2008.
[54] A. Plus, "Getting started modeling processes with solids," City, 2004.
[55] R. Schefflan, Teach yourself the basics of Aspen Plus. John Wiley & Sons, 2016.
[56] W. Doherty, A. Reynolds, and D. Kennedy, "Aspen plus simulation of biomass gasification in a steam blown dual fluidised bed," 2013.
[57] R. R. Rajan and C. Wen, "A comprehensive model for fluidized bed coal combustors," AIChE Journal, vol. 26, no. 4, pp. 642-655, 1980.
[58] Z. Yao, X. Ma, Z. Wu, and T. Yao, "TGA–FTIR analysis of co-pyrolysis characteristics of hydrochar and paper sludge," J. Anal. Appl. Pyrolysis, vol. 123, pp. 40-48, 2017.
[59] B. Stuart, "Infrared spectroscopy," Kirk‐Othmer Encyclopedia of Chemical Technology, 2000.
[60] J. Zhao, W. Xiuwen, J. Hu, Q. Liu, D. Shen, and R. Xiao, "Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS," Polymer degradation and stability, vol. 108, pp. 133-138, 2014.
[61] J. de Oliveira Silva et al., "Thermal analysis and FTIR studies of sewage sludge produced in treatment plants. The case of sludge in the city of Uberlândia-MG, Brazil," Thermochim. Acta, vol. 528, pp. 72-75, 2012.
[62] V. Skoulou, G. Koufodimos, Z. Samaras, and A. Zabaniotou, "Low temperature gasification of olive kernels in a 5-kW fluidized bed reactor for H2-rich producer gas," Int. J. Hydrogen Energy, vol. 33, no. 22, pp. 6515-6524, 2008.
[63] J. M. Lee, Y. J. Kim, W. J. Lee, and S. D. Kim, "Coal-gasification kinetics derived from pyrolysis in a fluidized-bed reactor," Energy, vol. 23, no. 6, pp. 475-488, 1998/06/01/ 1998, doi: https://doi.org/10.1016/S0360-5442(98)00011-5.
[64] J. Xie, W. Zhong, B. Jin, Y. Shao, and Y. Huang, "Eulerian–Lagrangian method for three-dimensional simulation of fluidized bed coal gasification," Adv. Powder Technol., vol. 24, no. 1, pp. 382-392, 2013.
[65] K. Umeki, K. Yamamoto, T. Namioka, and K. Yoshikawa, "High temperature steam-only gasification of woody biomass," Applied energy, vol. 87, no. 3, pp. 791-798, 2010.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-09-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-09-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw