進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0907202010410600
論文名稱(中文) 工業廠房太子樓自然通風研究-以風洞實驗與CFD模擬
論文名稱(英文) A Study on the Natural Ventilation through Openings on Covered Ridge of Industrial Plant -Wind Tunnel Tests and CFD Simulation
校院名稱 成功大學
系所名稱(中) 建築學系
系所名稱(英) Department of Architecture
學年度 108
學期 2
出版年 109
研究生(中文) 黃子凌
研究生(英文) Tzu-Ling Huang
學號 N78001098
學位類別 博士
語文別 中文
論文頁數 134頁
口試委員 指導教授-曾俊達
共同指導教授-賴啟銘
召集委員-黃文鴻
口試委員-蘇鴻奇
口試委員-郭建源
口試委員-江逸章
中文關鍵字 省能  風洞實驗  數值模擬  換氣率 
英文關鍵字 energy savings  wind-tunnel testing  CFD numerical simulation  ACH 
學科別分類
中文摘要 台灣為高溫潮濕環境,工業廠房普遍存在換氣不足與悶熱問題,通風設計有助於改善工業廠房本身潮濕悶熱環境,如能藉由自然通風設計改善工業廠房換氣問題,尚能減少能源使用,對未來廠房設計應有相當誘因。

研究方法運用縮尺模型風洞實驗數據驗證流體力學CFD數值模擬可信度,操作足尺CFD進行穩態氣流場與溫度場模擬,針對不同外部風速與風向角度計算各太子樓屋脊開口部設計中基部高度H、基部寬度S、屋簷延伸E對室內換氣率(ACH)之影響,綜合評估後提供未來太子樓設計參考之用。

研究結果顯示,屋脊開口部設計三影響因子,基部高度H為顯著正影響;無風狀態下透過熱浮力換氣,基部高度H提高至0.6m可滿足工場ㄧ般作業室每小時換氣量6ACH;外部風速為1m/s換氣方式為熱浮力換氣與風壓換氣並行,風向角度0∘、45∘時,基部高度H0.3m可滿足工場ㄧ般作業室每小時換氣量6ACH,當基部高度提高至0.9m可滿足有害氣體塵埃發出地方每小時換氣量20ACH,風向角度90∘基部高度提高至0.6m可滿足每小時換氣量6ACH;當外部風速3m/s換氣方式轉為風壓換氣,任何風向角度均能有效帶走屋頂熱累積,風向角度0∘、45∘,基部高度H0.3m可滿足有害氣體塵埃發出地方每小時換氣量20ACH,風向角度90∘則須將基部高度H提高至0.6m。
英文摘要 Due to dramatic changes in World environment, lack of Petroleum energy resources and the development of the renewable energies on the supply side has become a key task that the governments around the whole world must face.The urban warmer phenomenon has become more obvious with the process of urbanization, the poor design for openings of buildings both have greatly reduced the efficacy of natural ventilation,the indoor air quality has significantly worsened, and the problems of poor ventilation is yet to be solved.
Taiwan is a high temperature and humid environment,In response to this increasing energy demand, various studies have proposed energy-saving. In general, there are insufficient ventilation and sultry problems in industrial plants. Ventilation design helps to improve the humid and sultry environment of industrial plants. If natural ventilation design can improve the ventilation problem of industrial plants,energy consumption by applying an efficient energy-saving design. it can reduce energy use as well. There should be considerable incentives for future plant design.Furthermore, analyses on the CFD simulation on the performances of different scale-type of Openings on Covered Ridge. The results could be a reference for natural ventilation design in the future.
The research method uses the scale model of wind tunnel experimental data to verify the credibility of the numerical simulation of hydrodynamic CFD(Computational Fluid Dynamics), and the full-scale CFD (Computational Fluid Dynamics)is used to simulate the steady-state airflow field and temperature field. Flow pattern investigations on the same roof structures was specifically conducted using flow visualization observation in a reduced-scale model.It shows that flow structures near the openings on covered ridge have significant influence on natural ventilation performance.
The main factors including the height of the ridge opening (H), the width of the ridge opening (S), and the extension of eaves (E) are calculated for different external wind speeds and wind direction angles for the influence of the indoor ventilation rate (ACH). After comprehensive evaluation, it will provide reference for the design of the ridge in the future.Results suggested that, height of openings on covered ridge is an obvious positive relationship;height of openings on covered ridge increased to 0.6m in breezeless, it can meet the recommendations of 6(ACH) in the factory work room; when the external wind speed 1(m/s) ,ventilation mode is transformed into buoyancy-driven ventilation and wind-driven ventilation, When the wind direction 0∘, 45∘,height of openings on covered ridge increased to 0.3m in wind velocity 1(m/s), it can meet the recommendations of 6(ACH) in the factory work room, increased to 0.9m in wind velocity 1(m/s), it can meet the recommendations of 20(ACH) in the harmful gas dust factory work room, When the wind direction 90∘,height of openings on covered ridge increased to 0.6m in wind velocity 1(m/s), it can meet the recommendations of 6(ACH) in the factory work room;when the external wind speed 3(m/s) ,ventilation mode is wind-driven ventilation, Any wind direction can effectively take away the roof heat accumulation, When the wind direction 0∘, 45∘,height of openings on covered ridge increased to 0.3m in wind velocity 3(m/s), it can meet the recommendations of 20(ACH) in the harmful gas dust factory work room, When the wind direction 90∘,height of openings on covered ridge increased to 0.6m in wind velocity 3(m/s), it can meet the recommendations of 20(ACH) in the harmful gas dust factory work room.
The research results indicated that among the main factors of the roof ridge opening design, the base height of the ridge opening (H) showed significant positive influence, the width of the ridge opening (S), and the extension of eaves (E) are low-level correlations,it means that there is no obvious linear correlation between the two variables. Although the ventilation rate should be as high as possible, but in the practice, it should be able to meet the minimum requirements specification and then depending on site-related adjustment may be.Through the thermal buoyancy ventilation with no-wind status, the average ventilation reached 6ACH per hour while the base height of the ridge opening (H) was 0.6m. if want meet the recommendations of 20(ACH) in the harmful gas dust factory work room,recommendations to achieve the goal through mechanical ventilation.
For this study , the roof ridge opening design studies, studies conducted by designing ventilation benefit composition ,however, the application analysis of the design of the roof ridge opening design in industrial plants still needs to be discussed in depth. In order to simplify the problem in the experimental planning of this study, only the roof ridge opening design was changed and it was assumed that all floors had windows .But the actual plant design, not all of these patterns, the proposed research may actually be the case in the future wind-tunnel testing or numerical simulation, analysis and discussion the roof ridge opening configuration impact on the natural ventilation.
論文目次 目錄 I
表目錄 III
圖目錄 V
符號與用語說明 X
第一章 緒論 1
1-1 研究動機與目的 1
1-1-1 研究動機 1
1-1-2 研究目的 2
1-2 研究範圍與方法 3
1-2-1 研究範圍 3
1-2-2 研究方法 4
1-3 研究流程 5
第二章 建築通風與數值模擬文獻回顧 6
2-1 前言 6
2-2 自然通風研究 6
2-3 屋頂散熱研究與設計 8
2-4 自然通風形式與構造 9
2-4-1 傳統太子樓形式 10
2-5 通風效益評估研究 11
2-6  數值模擬應用研究 14
2-6-1 數值模擬 14
2-6-2 CFD數值模擬數學解析方式 17
2-7  風洞實驗原理 18
2-8 小結 19
第三章 風洞實驗與數值模擬研究方法 21
3-1 前言 21
3-2 數值模擬基本假設 22
3-2-1  PHOENICS 運算步驟 22
3-3 縮尺太子樓數值模擬與實驗比對 24
3-3-1 縮尺壓克力模型風洞實驗 24
3-3-2 縮尺CFD模型數值模擬 28
3-3-3 縮尺實驗與縮尺數值模擬比對 32
3-4 足尺工業廠房太子樓模擬環境設定 35
3-4-1 真實環境外部條件設定 35
3-4-2 足尺邊界與變因模擬設定 37
3-4-3 格點系統設定 42
3-4-4 鬆弛系數與收斂條件設定 43
3-5 小結 44
第四章 足尺太子樓數值模擬結果與效益評估 45
4-1  前言 45
4-2 風向角度為0∘各風速與開口部尺寸關係 46
4-2-1 外部風速0.01m/s對應太子樓開口部尺寸關係 46
4-2-2 外部風速1m/s對應太子樓開口部尺寸關係 50
4-2-3 外部風速3m/s對應太子樓開口部尺寸關係 54
4-3  風向角度為45∘各風速與開口部尺寸關係 58
4-3-1 外部風速1m/s對應太子樓開口部尺寸關係 58
4-3-2 外部風速3m/s對應太子樓開口部尺寸關係 62
4-4  風向角度為90∘各風速與開口部尺寸關係 66
4-4-1 外部風速1m/s對應太子樓開口部尺寸關係 66
4-4-2 外部風速3m/s對應太子樓開口部尺寸關係 70
4-6  各風向角度最大與最小值氣流場與溫度場比較 74
4-5-1 風向角度0∘各外部風速最大最小換氣率氣流場與溫度場 74
4-5-2 風向角度45∘各外部風速最大最小換氣率氣流場與溫度場 78
4-5-3 風向角度90∘各外部風速最大最小換氣率氣流場與溫度場 81
4-6 小結 84
第五章 自然通風效益評估 85
5-1 外部風速0.01m/s熱浮力換氣狀態 86
5-2 外部風速1m/s熱浮力換氣與風壓換氣並行狀態 88
5-3 外部風速3m/s風壓換氣狀態 94
第六章 結論及建議 100
6-1 結論 100
6-2 建議 102
參考文獻 103
附錄(一)流場模擬圖 107
附錄(二)各外部風速、角度對應不同開口設計之換氣率 123

參考文獻 參考文獻
 中文論文【CS】
1. 趙福雲、湯廣發、劉娣、劉志強、王漢青,CFD 數值模擬的系統誤差反饋及其實現,暖通空調,第6 期,2004。
2. 黃士瑞,「誘導式自然通風空間中不同粒徑顆粒物質之室內外關係 」,2003。
3. 邱英浩、周鼎金、秦子傑,計算流體力學可信度驗證程序之初步研究,中華民國建築學會第十八屆第二次建築研究成果發表會論文集光碟,高雄,台灣,G:101-106,2006。
4. 黃士瑞,「誘導式自然通風空間中不同粒徑顆粒物質之室內外關係 」,2003
5. 周伯丞、江哲銘,「建築軀殼開口部自然通風效果之研究」,成大建研所博論,P.38-.41,P.74,2000.6。
6. 邱繼哲,「建築物及生物成長設施之誘導式通風冷卻設計研究-以雙層外殼內置流動空氣層構造為例」,台大生物環境系統工程學研究所碩論,2002。
7. 邱英浩、戴育澤、吳孟芳:利用自然通風技術改善室內熱環境及通風效能之研究-以慈濟台中分會為例
8. 黃鈺純,雙層屋頂搭配太子樓構造對室內自然通風效果影響之研究—以國民小學教室單元為例,成功大學建築所,碩士論文,2006。
9. 林沂品,具自體通風效果太陽光電建築構造(Ventilated BIPV)之通風與節能效益分析,成大建研所博論,2010
10. 陳念祖,建築開口部裝設導風板對自然通風之效益,成大建研所博論,2007。
11. 黃裕益,自然通風溫室之微氣候調節,設施栽培自動化專輯、1994

 一般出版品【CB】
1. CIBSE,1977
2. 濕熱作業環境通風控制案例探討,Case Studies on Industrial Ventilation Control for Humid and Hot Workplaces,王順志、莊侑哲, 勞動部勞研所,2015
3. 菸樓文化聚落產業再發展計畫委託規劃案,花蓮文化局,2016

 網際網路【CH】
1. 交通部中央氣象局網站https://www.cwb.gov.tw/V7/
2. Enhanced, modified, and vectorized by Ali Zifan. - Derived from World Köppen Classification (with authors).svg., CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=47085769
3. 中亞鐵工廠,http://www.chungya.tw/index.php/06
4. 建築技術規則,https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=D0070115
5. 鳳林百年菸樓風華再現https://eureka99.pixnet.net/blog/post/24701480
6. 花蓮縣文化局-在地知識學-鳳林鎮(二)「菸樓文化資產與菸業庶民歷史」
 西文文獻【EB】
1. V. Costanzo, M. Donn.Thermal and visual comfort assessment of natural ventilated office buildings in Europe and North America. Energy Build. 140 (2017) 210–223.
2. Z. Cheng, L. Li, W.P. Bahnfleth. “Natural ventilation potential for gymnasia – case study of ventilation and comfort in a multisport facility in northeastern United States. Build. Environ. 108 (2016) 85–98.
3. G. Chiesa, M. Grosso.Geo-climatic applicability of natural ventilative cooling in the Mediterranean area, Energy Build. 107 (2015) 376–391.
4. Belleri, M. Avantaggiato, R. Lollini. “Ventilative cooling in shopping centers' retrofit: the Mercado Del val case study.Energy Procedia 111 (2017) 669–677.
5. G. Carrilho da Graça, P. Linden.Ten questions about natural ventilation of nondomestic buildings. Build. Environ. 107 (2016) 263–273.
6. N.F.M. Kasim, S.A. Zaki, M.S.M. Ali, N. Ikegaya, A.A. Razak. Computational study on the influence of different opening position on wind-induced natural ventilation in urban building of cubical array. Procedia Eng. 169 (2016) 256–263.
7. Fitsum Tariku and Emishaw D. Iffa. (2017). Temperature and Air Flow Patterns in Attic Roofs . American Society of Civil Engineers., 10.1061 /(ASCE)AE.1943-5568.0000261
8. P. Karava, T. Stathopoulos, A.K. Athienitis. Airflow assessment in cross-ventilated buildings with operable façade elements, Build. Environ. 46 (1) (2011) 266–279.
9. M.Z.I. Bangalee, J.J. Miau, S.Y. Lin, M. Ferdows.Effects of lateral window position and wind direction on wind-driven natural cross ventilation of a building: a computational approach. J. Comput. Eng. 2014 (2014) 1–15.
10. Aboulnaga MM. A roof solar chimney assisted by cooling cavity for natural ventilation in buildings in hot arid climates: an energy conservation approach in Al-Ain city. Renewable Energy ,1998
11. Santamouris M, Sfakianaki A, Pavlou K. On the efficiency of night ventilation techniques applied to residential buildings. Energy and Buildings 2010
12. Justin C. DeBlois, Melissa M. Bilec, Laura A. Schaefer.Design and zonal building energy modeling of a roof integrated solar chimney.Renewable Energy 52 ,2013
13. Iqbal, H. Wigo, P. Heiselberg, A. Afshari.Effect of opening the sash of a centre-pivot roof window on wind pressure coefficients.Int. J. Vent. 13 (3)(2014)
14. Ahsan Iqbal , Alireza Afshari , Hans WigÖ, Per Heiselberg.Discharge coefficient of centre-pivot roof windows, Building and Environment 92 (2015)
15. Chimney H.ussain H. Al-Kayiem , K.V. Sreejaya, Aja O. Chikereb .Experimental and numerical analysis of the influence of inlet configuration on the performance of a roof top solar chimney .Energy and Buildings 159 (2018)
16. T. van Hooff, B. Blocken, Y. Tominaga.On the accuracy of CFD simulations of crossventilation flows for a generic isolated building: comparison of RANS.LES and experiments, Build. Environ. 114 (2016).
17. Y. Tominaga, B. Blocken. Wind tunnel analysis of flow and dispersion in crossventilated isolated buildings: impact of opening positions. J. Wind Eng. Ind. Aerod. 155 (2016).
18. T. van Hooff, B. Blocken, Y. Tominaga.On the accuracy of CFD simulations of crossventilation flows for a generic isolated building: comparison of RANS.LES and experiments, Build. Environ. 114 (2016).
19. R. Ramponi, B. Blocken.CFD simulation of cross-ventilation for a generic isolated building: impact of computational parameters.Build. Environ. 53 (2012)
20. H. Cheng-hu, T. Kurabuchi, M. Ohba.Numerical study of cross-ventilation using two- equation RANS numerical study of cross-ventilation using two-equation RANS.Int. J. Vent. 4 (2) (2005)
21. Lee, S. Lee, G. Kim, J. Sung, S. Sung, Y. Yoon. PIV verification of greenhouse ventilation air flows to evaluate CFD accuracy, Trans. ASAE Am. Soc. Agric. Eng. 48 (2005)
22. Rotach, M.W. .Profiles of turbulence statistics in and above an urban street canyon. Atmospheric Environment 29, (1995)1473-1486
23. Uehara, K., Murakami, S., Oikawa, S., Wakamatsu, S.. Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons. Atmospheric Environment 34, (2000)1553-1562.
24. Kim, J. J., & Baik, J. J. . A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k–ε turbulence model. Atmospheric Environment, (2004)38(19), 3039-3048
25. L. James Lo a, David Banks, Atila Novoselac.Combined wind tunnel and CFD analysis for indoor airflow prediction of wind-driven cross ventilation. Building and Environment 60 (2013)
26. J. Franke, A. Hellsten, H. Schlünzen, B. Carissimo (Eds.) .Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment. COST Office Brussels. 2007. ISBN 3-00-018312-4.
27. Y. Tominaga, A. Mochida, R. Yoshie, H. Kataoka, T. Nozu, M. Yoshikawa,T. Shirasawa . AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J. Wind Eng. Ind. Aerodyn. 96 (2008)
28. B. Blocken . Computational Fluid Dynamics for urban physics: importance ,scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations.Build. Environ. 91 (2015)
29. Emishaw Iffa, Fitsum Tariku .Attic baffle size and vent configuration impacts on attic ventilation . Building and Environment 89 (2015)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw