進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0907201823545600
論文名稱(中文) 交叉式雙旋翼無人直升機之應用研究
論文名稱(英文) The Research of Application Intermeshing Rotors on Unmanned Helicopters
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 106
學期 2
出版年 107
研究生(中文) 梁仁銓
研究生(英文) Jen-Chuan Liang
學號 P46054040
學位類別 碩士
語文別 中文
論文頁數 67頁
口試委員 指導教授-賴維祥
口試委員-楊憲東
口試委員-李君謨
中文關鍵字 交叉式雙旋翼直升機  直升機動量理論  無人直升機 
英文關鍵字 Intermeshing Rotors  Helicopter Momentum Theory  Unmanned Helicopters 
學科別分類
中文摘要 本研究以交叉式雙旋翼 (Intermeshing Rotors)無人直升機(Unmanned Helicopters) 的應用探討,計算交叉式旋翼直升機的互擾誘導動力效率因子(Interference-Induced Power Factor, int),且針對交叉式雙旋翼無人直升機型的設計研究。
交叉式雙旋翼無人機型研究將以三個部份來探討:旋翼的互擾誘導動力效率因子、外型與無人機應用;外型參考Kaman Aircraft’s K-1200(K-MAX)與Kaman Aircraft’s HH-43B(Huskie)的設計,旋翼軸傾角(Rotors Shaft Angle)與旋轉中心距離(Rotors Center Distances)為重要決定參數,在無人直升機中,結構因素使無人機型可將旋轉中心增加,軸傾角縮小,減少額外損耗的功率。
旋翼的互擾誘導動力效率因子為直升機效率計算的重要參數,可用來比較旋翼所損耗的能量,以同軸雙旋翼(Coaxial Rotors)與橫列雙旋翼(Tandem Rotors)的動量理論運算為基礎,並且在同軸與橫列式雙旋翼的動量理論上加入軸傾角與旋轉中心距離兩重要參數,計算交叉式雙旋翼的結果為1.375,與文獻的結果為1.388 [15]相當一致。
在無人直升機型方面,使用比例律(Scaling Law)將Kaman Aircraft’s K-1200直升機縮小成小尺寸無人直升機,預先估計的葉尖馬赫數(Tip Speed)為0.34,與SwissDrone’s SDO 50 V2無人機0.42[11],相差約在20%;在後續設計上可用來先期計算,供後續設實驗測試參考。
英文摘要 The purpose of this study is to investigate the application of intermeshing rotors unmanned helicopters, including calculating the interference-induced power factor of intermeshing rotors, and inquiring design characteristics of intermeshing rotors. Three aspects are chosen to explore intermeshing rotors’ feature, i.e., interference-induced power factor, appearance, and application of unmanned helicopters. The design of the Kaman Aircraft's K-1200(K-MAX) and Kaman Aircraft’s HH-43B(Huskie) were applied to unmanned helicopters. The rotors shaft angle and the rotors center distances are important parameters. Due to structural factor, the unmanned helicopters can increase the rotors center distances, reduce the rotors shaft angle, and decrease the extra loss power . The interference-induced power factor plays an important role in helicopter efficiency calculation. It can be used to compare the energy lost by the rotor. Based on the coaxial rotors and tandem rotors momentum theory, Two parameters, the rotors shaft angle and the rotors center distances are added in this evaluation. The result of calculation is 1.375 which is very close to the result of the literature[15] is 1.38. In the unmanned helicopter application, the scaling law is used to scale down the Kaman Aircraft's K-1200 helicopter to a small-sized unmanned helicopter with a tip speed of 0.34, which is only 20% different from the unmanned helicopter SwissDrone’s SDO 50 V2 0.42[11]. These results will be very helpful to use in preliminary analysis before any experimental test.
論文目次 中文摘要 I
英文摘要 II
誌謝 VII
目錄 VIII
表目錄 X
圖目錄 XI
符號表 XII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3 文獻回顧 6
1.3.1 動量理論 7
1.3.1.1 同軸雙旋翼系統 7
1.3.1.2 橫列雙旋翼直升機系統 12
1.3.2 葉片元素動量理論 17
1.3.2.1 徑向內流方程式 17
1.3.2.2 浦朗多葉尖損失方程式(Prandtl’s Tip-Loss Equation) 19
1.3.2.3 葉片元素動量理論數值解 21
1.3.2.4 同軸雙旋翼直升機葉片元素動量理論 23
1.3.3 比例律(Scaling Laws) 27
1.3.3.1 佛魯德比例律(Froude Scaling) 27
1.3.3.2 馬赫比例律(Mach Scaling) 29
1.3.3.3 比例律假說 29
1.4 論文架構 32
第二章 交叉式雙旋翼直升機外型分析 33
2.1 機身設計 33
2.1.1 旋翼旋轉中心距離 33
2.1.2 垂直尾翼尺寸 36
2.2 旋翼軸傾角與間隙 38
第三章 交叉式雙旋翼直升機空氣動力學分析 40
3.1 交叉式雙旋翼直升機動量理論 40
3.2 交叉式雙旋翼直升機葉片元素動量理論 46
3.3 結果比較 49
第四章 無人機模型的建立與分析 53
4.1 方法原理 53
4.2 與實際無人機比較 54
第五章 結論與未來展望 57
5.1 結論 57
5.2 未來展望 58
參考文獻 60
附錄 63
參考文獻 [1]Watkinson, J. Art of the Helicopter, Butterworth-Heinemann, 2003.
[2]Coleman, C. P. “A Survey of Theoretical and Experimental Coaxial Rotor Aerodynamic Research,” National Aeronautics and Space Administration, Ames Research Center, 1997.
[3]Leishman, G. J. Principles of helicopter Aerodynamics with CD extra, Cambridge University Press, 2006.
[4]Dingeldein, R. C. “Wind-Tunnel Studies of the Performance of Multirotor Configurations,” NACA Technical Note 3246, 1954.
[5]Harris, F. D. “Twin Rotors Hover Performance,” Journal of the American Helicopter Society, Vol. 44, No. 1, p.34-37, 1999.
[6]Gessow, A., and Myers, G. C. Aerodynamics of the Helicopter, Frederick Ungar, 1952.
[7]Leishman, G. J., and Ananthan, S. “Aerodynamic Optimization of a Coaxial Proprotor,” Annual Forum Proceedings-American Helicopter Society, Vol. 62, No. 1, p.64, American Helicopter Society, INC, 2006.
[8]Mettler, B. Identification Modeling and Characteristics of Miniature Rotorcraft, Springer Science & Business Media, 2013.
[9]Kaman Aerospace Corporation, “K-1200 FAA Approved Rotorcraft Flight Manual,” Kaman Aerospace Corporation, Bloomfield Connecticut, USA, 2004.
[10]Wei, F. S., Moore, E., and Gates, A. “An Intermeshing Rotors Helicopter Design and Test,” 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p.0564, 2015.
[11]Filippone, A. “Data and Performances of Selected Aircraft and Rotorcraft,” Progress in Aerospace Sciences, Vol. 36, No. 8, p.629-654, 2000.
[12]Saribay, Z., Wei, F. S., and Sahay, C. “Optimization of an Intermeshing Rotors Transmission System Design,” 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, p.2286, 2005.
[13]University of Maryland., “CalVert High-Speed V/STOL Personal Transport,” Department of Aerospace Engineering University of Maryland College Park, p.20740, 1999.
[14]Voigt, A. E., Dauer, J. C., and Knaak, F. “Measurement of Blade Deflection of an Unmanned Intermeshing Rotors Helicopter,” The 43rd European Rotorcraft Forum, September, 2017.
[15]Pflumm, T., Barth, A., Kondak, K., and Hajek, M. “Auslegung und Konstruktion eines Hauptrotorblattes für ein in extremen Flughöhen operierendes Drehflügel-UAV,” Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth eV, p.11, 2015.
[16]Voigt, A. E., Dauer, J. C., Krenik, A., and Dittrich, J. “Detection of Forward Flight Limitations of Unmanned Helicopters,” The 72nd Annual Forum of the American Helicopter Society, p.1-12, 2016.
[17]Yamakawa, M., Mitsunari, N., and Asao, S. “Numerical Simulation of Rotation of Intermeshing Rotors using Added and Eliminated Mesh Method,” Procedia Computer Science, 108, p.1883-1892, 2017.
[18]Harun-Or-Rashid, M, Song, J. B, Chae, S, Byun, Y. S, and Kang, B. S., “Unmanned Coaxial Rotor Helicopter Dynamics and System Parameter Estimation,” Journal of Mechanical Science and Technology, Vol. 28, No. 9, p.3797-3805, 2014.
[19]Frost, C., Tischler, M., and Bielefield, M. “Design and Test of Flight Control Laws for the Kaman Burro Unmanned Aerial Vehicle,” Atmospheric Flight Mechanics Conference, p.4205, 2000.
[20]SwissDrones Operating AG., “SDO 50 V2,” http://www.swissdrones.com/sdo-50/, 2014.
[21]CAD + Modelltechnik Jung., “Dragon,” http://www.cad-modelltechnik-jung.de/projekte/kamax.htm, 2009.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-06-19起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-06-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw