進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0907201617475600
論文名稱(中文) 利用過濾微影法製備紙基微流體分析裝置
論文名稱(英文) Fabrication of microfluidic paper-based analytical devices (µPADs) by filtration-assisted lithography (FilL)
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 李維璿
研究生(英文) Wei-Shuan Li
學號 N36031188
學位類別 碩士
語文別 中文
論文頁數 80頁
口試委員 指導教授-莊怡哲
口試委員-王孟菊
口試委員-鄭宜肪
中文關鍵字 微流體  濾紙  過濾  葡萄糖檢測  聚甲基丙烯酸甲酯 
英文關鍵字 microfluidics  filter paper  filtration  glucose detection  polymethylmethacrylate 
學科別分類
中文摘要 近年來,紙基微流體由於其優異的特點,例如成本低,無須施加外力或外接儀器,高便攜性,以及儲存試劑的能力,在化學和生物分析,以及point-of-care診斷應用中受到很大的關注。市面上已有許多不同的紙基微流體製作方式被提出,例如光蝕刻法(photolithography)、塗蠟法(wax printing)、切割法(paper cutting)、 以及遮罩法(mask)等。在本研究中,我們提出利用抽氣過濾法的方法來製備紙基微流體分析裝置。其過程為先將模板遮罩黏貼於濾紙上,在鏤空處滴上高分子溶液,接著抽真空。我們發現高分子可以在濾紙的厚度方向上堆積,在濾紙內部形成阻擋層(barrier),完成微流道的製備。當微流道通入墨水時,液體不會從流道滲漏出。我們進一步使用製備之紙基微流體裝置進行葡萄糖的檢測,其實驗結果與其他方法製備的紙基微流體相同。此技術可在1分鐘左右完成紙基微流體的製作。
英文摘要 In this study, we have proposed and demonstrated a relatively simple and fast technique, i.e. filtration-assisted lithography (FilL) to fabricate paper-based microfluidic devices. The filter paper was first patterned with the tape, followed by dispensing polymer solution on top of the paper and turning on vacuum pump. It was found that the polymer was retained inside the filter paper at the designated locations to form the barrier, i.e. the channel wall. The minimum channel width is approximately 1000 m. When using 22 wt% polymethylmethacrylate solution with 120,000 molecular weight, the paper-based microfluidic devices can be fabricated in approximately 1 min.
論文目次 中文摘要 i
Extended Abstract ii
誌謝 viii
目錄 ix
圖目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與方法 1
第二章 文獻回顧 3
2.1 紙基微流體 3
2.2 紙基微流體的製作 5
2.2.1 Handcrafted 6
2.2.2 Mask 8
2.2.3 Printing 10
2.2.4 Cutting/Shaping 13
2.2.5 其他方法 15
2.3 紙基微流體之檢測方法 20
2.3.1 光度檢測法 20
2.3.2 化學發光法 21
2.3.3 螢光檢測法 21
2.3.4 電化學檢測法 22
2.4 紙基微流體之應用 23
2.4.1 臨床檢測 23
2.4.2 環境監控 25
2.4.3 食安分析 27
2.5 過濾及其原理 29
第三章 實驗材料及方法 33
3.1 實驗藥品與材料 33
3.2 實驗儀器 39
3.3 實驗步驟 45
3.3.1 高分子溶液配置 45
3.3.2 基板製作 45
3.3.3 過濾 47
3.3.4 Glucose檢測應用 49
第四章 結果討論 50
4.1 濾紙選擇 50
4.2 高分子選擇 52
4.3 製程變數之影響 54
4.3.1 高分子濃度 54
4.3.2 流道寬度 60
4.3.3 Barrier寬度 62
4.3.4 過濾時間 64
4.4 墨水使用量之分析 66
4.5 過濾時基板位置 67
4.6 葡萄糖檢測 70
第五章 結論 71
第六章 未來工作與展望 73
第七章 參考文獻 74
參考文獻 [1] A. Manz, N. Graber, and H. M. Widmer, "Miniaturized total chemical analysis systems: A novel concept for chemical sensing," Sensors and Actuators B: Chemical, vol. 1, pp. 244-248, 1// 1990.
[2] F. Szabadvary, "Indicators: A historical perspective," Journal of Chemical Education, vol. 41, p. 285, 1964.
[3] D. M. Cate, J. A. Adkins, J. Mettakoonpitak, and C. S. Henry, "Recent Developments in Paper-Based Microfluidic Devices," Analytical Chemistry, vol. 87, pp. 19-41, Jan 6 2015.
[4] A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, "Patterned paper as a platform for inexpensive, low-volume, portable bioassays," Angewandte Chemie-International Edition, vol. 46, pp. 1318-1320, 2007 2007.
[5] Y. Lu, W. Shi, L. Jiang, J. Qin, and B. Lin, "Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay," Electrophoresis, vol. 30, pp. 1497-1500, May 2009.
[6] V. Leung, A.-A. M. Shehata, C. D. Filipe, and R. Pelton, "Streaming potential sensing in paper-based microfluidic channels," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 364, pp. 16-18, 2010.
[7] E. Carrilho, A. W. Martinez, and G. M. Whitesides, "Understanding wax printing: a simple micropatterning process for paper-based microfluidics," Analytical chemistry, vol. 81, pp. 7091-7095, 2009.
[8] W. Dungchai, O. Chailapakul, and C. S. Henry, "A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing," Analyst, vol. 136, pp. 77-82, 2011 2011.
[9] X. Li, J. F. Tian, T. Nguyen, and W. Shen, "Paper-Based Microfluidic Devices by Plasma Treatment," Analytical Chemistry, vol. 80, pp. 9131-9134, Dec 2008.
[10] X. Li, J. Tian, and W. Shen, "Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors," Cellulose, vol. 17, pp. 649-659, 2010.
[11] D. A. Bruzewicz, M. Reches, and G. M. Whitesides, "Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper," Analytical chemistry, vol. 80, pp. 3387-3392, 2008.
[12] K. Abe, K. Suzuki, and D. Citterio, "Inkjet-printed microfluidic multianalyte chemical sensing paper," Analytical Chemistry, vol. 80, pp. 6928-6934, Sep 15 2008.
[13] K. Abe, K. Kotera, K. Suzuki, and D. Citterio, "Inkjet-printed paperfluidic immuno-chemical sensing device," Analytical and bioanalytical chemistry, vol. 398, pp. 885-893, 2010.
[14] J. L. Delaney, C. F. Hogan, J. Tian, and W. Shen, "Electrogenerated chemiluminescence detection in paper-based microfluidic sensors," Analytical chemistry, vol. 83, pp. 1300-1306, 2011.
[15] X. Li, J. Tian, G. Garnier, and W. Shen, "Fabrication of paper-based microfluidic sensors by printing," Colloids and Surfaces B: Biointerfaces, vol. 76, pp. 564-570, 4/1/ 2010.
[16] W. Wang, W.-Y. Wu, and J.-J. Zhu, "Tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration," Journal of Chromatography A, vol. 1217, pp. 3896-3899, 2010.
[17] E. M. Fenton, M. R. Mascarenas, G. P. Lopez, and S. S. Sibbett, "Multiplex Lateral-Flow Test Strips Fabricated by Two-Dimensional Shaping," Acs Applied Materials & Interfaces, vol. 1, pp. 124-129, Jan 2009.
[18] E. Fu, P. Kauffman, B. Lutz, and P. Yager, "Chemical signal amplification in two-dimensional paper networks," Sensors and Actuators B: Chemical, vol. 149, pp. 325-328, 8/6/ 2010.
[19] G. Chitnis, Z. Ding, C.-L. Chang, C. A. Savran, and B. Ziaie, "Laser-treated hydrophobic paper: an inexpensive microfluidic platform," Lab on a Chip, vol. 11, pp. 1161-1165, 2011.
[20] Y. Zhang, C. Zhou, J. Nie, S. Le, Q. Qin, F. Liu, et al., "Equipment-Free Quantitative Measurement for Microfluidic PaperBased Analytical Devices Fabricated Using the Principles of MovableType Printing," Analytical Chemistry, vol. 86, pp. 2005-2012, 2014.
[21] P. d. T. Garcia, T. M. Garcia Cardoso, C. D. Garcia, E. Carrilho, and W. K. Tomazelli Coltro, "A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays," Rsc Advances, vol. 4, pp. 37637-37644, 2014 2014.
[22] T. Songjaroen, W. Dungchai, O. Chailapakul, and W. Laiwattanapaisal, "Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping," Talanta, vol. 85, pp. 2587-2593, Oct 15 2011.
[23] C. Renault, M. J. Anderson, and R. M. Crooks, "Electrochemistry in hollow-channel paper analytical devices," Journal of the American Chemical Society, vol. 136, pp. 4616-4623, 2014.
[24] J. Olkkonen, K. Lehtinen, and T. Erho, "Flexographically printed fluidic structures in paper," Analytical chemistry, vol. 82, pp. 10246-10250, 2010.
[25] C. M. Cheng, A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, et al., "Paper‐Based ELISA," Angewandte Chemie International Edition, vol. 49, pp. 4771-4774, 2010.
[26] Y. Zhu, X. Xu, N. D. Brault, A. J. Keefe, X. Han, Y. Deng, et al., "Cellulose paper sensors modified with zwitterionic poly (carboxybetaine) for sensing and detection in complex media," Analytical chemistry, vol. 86, pp. 2871-2875, 2014.
[27] G. A. Posthuma-Trumpie, J. Korf, and A. van Amerongen, "Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey," Analytical and bioanalytical chemistry, vol. 393, pp. 569-582, 2009.
[28] M. Sajid, A.-N. Kawde, and M. Daud, "Designs, formats and applications of lateral flow assay: A literature review," Journal of Saudi Chemical Society, vol. 19, pp. 689-705, 11// 2015.
[29] W.-J. Zhu, D.-Q. Feng, M. Chen, Z.-D. Chen, R. Zhu, H.-L. Fang, et al., "Bienzyme colorimetric detection of glucose with self-calibration based on tree-shaped paper strip," Sensors and Actuators B: Chemical, vol. 190, pp. 414-418, 1// 2014.
[30] M. He and Z. Liu, "Paper-based microfluidic device with upconversion fluorescence assay," Analytical chemistry, vol. 85, pp. 11691-11694, 2013.
[31] A. M. Rosa, A. F. Louro, S. A. Martins, J. o. Inácio, A. M. Azevedo, and D. M. F. Prazeres, "Capture and detection of DNA hybrids on paper via the anchoring of antibodies with fusions of carbohydrate binding modules and ZZ-domains," Analytical chemistry, vol. 86, pp. 4340-4347, 2014.
[32] K. Scida, B. Li, A. D. Ellington, and R. M. Crooks, "DNA detection using origami paper analytical devices," Analytical chemistry, vol. 85, pp. 9713-9720, 2013.
[33] W. Dungchai, O. Chailapakul, and C. S. Henry, "Electrochemical detection for paper-based microfluidics," Analytical chemistry, vol. 81, pp. 5821-5826, 2009.
[34] R. F. Carvalhal, M. Simão Kfouri, M. H. de Oliveira Piazetta, A. L. Gobbi, and L. T. Kubota, "Electrochemical detection in a paper-based separation device," Analytical chemistry, vol. 82, pp. 1162-1165, 2010.
[35] Z. Nie, F. Deiss, X. Liu, O. Akbulut, and G. M. Whitesides, "Integration of paper-based microfluidic devices with commercial electrochemical readers," Lab on a Chip, vol. 10, pp. 3163-3169, 2010.
[36] J. Lu, S. Ge, L. Ge, M. Yan, and J. Yu, "Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing," Electrochimica Acta, vol. 80, pp. 334-341, 2012.
[37] T. Nurak, N. Praphairaksit, and O. Chailapakul, "Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water," Talanta, vol. 114, pp. 291-296, 2013.
[38] C. Hu, X. Bai, Y. Wang, W. Jin, X. Zhang, and S. Hu, "Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes," Analytical chemistry, vol. 84, pp. 3745-3750, 2012.
[39] G. Demirel and E. Babur, "Vapor-phase deposition of polymers as a simple and versatile technique to generate paper-based microfluidic platforms for bioassay applications," Analyst, vol. 139, pp. 2326-2331, 2014 2014.
[40] D. M. Cate, W. Dungchai, J. C. Cunningham, J. Volckens, and C. S. Henry, "Simple, distance-based measurement for paper analytical devices," Lab on a Chip, vol. 13, pp. 2397-2404, 2013 2013.
[41] W. Liu, C. L. Cassano, X. Xu, and Z. H. Fan, "Laminated Paper-Based Analytical Devices (LPAD) with Origami-Enabled Chemiluminescence Immunoassay for Cotinine Detection in Mouse Serum," Analytical Chemistry, vol. 85, pp. 10270-10276, Nov 5 2013.
[42] P. Rattanarat, W. Dungchai, D. Cate, J. Volckens, O. Chailapakul, and C. S. Henry, "Multilayer Paper-Based Device for Colorimetric and Electrochemical Quantification of Metals," Analytical Chemistry, vol. 86, pp. 3555-3562, Apr 1 2014.
[43] O. Bondarenko, K. Juganson, A. Ivask, K. Kasemets, M. Mortimer, and A. Kahru, "Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review," Archives of Toxicology, vol. 87, pp. 1181-1200, 2013.
[44] B. M. Jayawardane, L. d. Coo, R. W. Cattrall, and S. D. Kolev, "The use of a polymer inclusion membrane in a paper-based sensor for the selective determination of Cu(II)," Analytica Chimica Acta, vol. 803, pp. 106-112, 11/25/ 2013.
[45] G. J. Brewer, "Copper toxicity in Alzheimer's disease: Cognitive loss from ingestion of inorganic copper," Journal of Trace Elements in Medicine and Biology, vol. 26, pp. 89-92, 6// 2012.
[46] A. Sadollahkhani, A. Hatamie, O. Nur, M. Willander, B. Zargar, and I. Kazeminezhad, "Colorimetric Disposable Paper Coated with ZnO@ZnS Core-Shell Nanoparticles for Detection of Copper Ions in Aqueous Solutions," Acs Applied Materials & Interfaces, vol. 6, pp. 17694-17701, Oct 22 2014.
[47] B. M. Jayawardane, S. Wei, I. D. McKelvie, and S. D. Kolev, "Microfluidic paper-based analytical device for the determination of nitrite and nitrate," Analytical chemistry, vol. 86, pp. 7274-7279, 2014.
[48] J. Jokerst, J. Adkins, B. Bisha, M. Mentele, L. Goodridge, and C. Henry, "Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens," Analytical chemistry, vol. 84, pp. 2900-2907, 2012.
[49] J. Shi, F. Tang, H. Xing, H. Zheng, B. Lianhua, and W. Wei, "Electrochemical detection of Pb and Cd in paper-based microfluidic devices," Journal of the Brazilian Chemical Society, vol. 23, pp. 1124-1130, 2012.
[50] V. Mani, K. Kadimisetty, S. Malla, A. A. Joshi, and J. F. Rusling, "Paper-based electrochemiluminescent screening for genotoxic activity in the environment," Environmental science & technology, vol. 47, pp. 1937-1944, 2013.
[51] W. Liu, J. Kou, H. Xing, and B. Li, "Paper-based chromatographic chemiluminescence chip for the detection of dichlorvos in vegetables," Biosensors and Bioelectronics, vol. 52, pp. 76-81, 2/15/ 2014.
[52] M. Cheryan, Ultrafiltration and microfiltration handbook: CRC press, 1998.
[53] J. Hermia, "Constant pressure blocking filtration law application to powder-law non-Newtonian fluid," Trans. Inst. Chem. Eng., vol. 60, pp. 183-187, 1982.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-06-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw